Will it sink or float?

Overview: Buoyancy explains why some objects float while others sink, helping us understand how objects behave in liquids and gases (fluids). This concept is important for designing ships, submarines, hot air balloons, and even for understanding natural events, like how fish swim or how clouds form in the atmosphere.

The goal of this learning unit is to encourage students to think about floating and sinking in terms of buoyant force.

Unit-specific objectives: (i) Understand the concept of buoyant force and its origin (ii) Explore and explain why objects float or sink (iii) Measure and calculate buoyant force using simple apparatus (iv) Investigate the dependence of buoyant force on physical properties (v) Develop and use representational models of forces in fluids

Minimum Time required: 3 sessions (40 min each)

Type of Learning Unit: Laboratory

Links to Curriculum: NCERT Science Class 8 (2025, 1st edition): Concept of weight measurement, Use of spring balance, Concept of buoyant force, Concept of floating and sinking (Chapter 5, Exploring forces) NCERT Science Class 8 (2025, 1st edition): Concept of density, Role of density in sinking & floating

(Chapter 9, The Amazing World of Solutes, Solvents, and Solutions)

NCERT Science Class 9 (2025, 1st edition): Concept of buoyancy, Archimedes' Principle, Why objects float or sink? (Chapter 9, Gravitation)

Introduction:

In your daily life, you would have seen that some objects float on water while others sink. Take a beaker filled with water, drop some everyday objects around you and test whether they float or sink.

It's also interesting to note that sometimes heavy objects float in water while light ones sink. For example, things like big wooden logs, ships/ boats, etc float on water while tiny pebbles, iron nails, and pins sink. Can you think about why this happens?

Q 1. What do you feel when you t	ry to lift something	neavy under the	e water? Does it fee	i neavier or lighter
than when it's outside the water?				
				

Encourage responses such as "it feels lighter," "there's less weight," or "water moves or splashes." Guide the discussion towards the idea that objects feel lighter when lifted underwater. Example if you are in a pool, you will feel lighter, or if you try to lift somebody in water, their weight will feel less heavy than their actual weight outside water.

Q 2. What do you think will happen if you push a floating object—like a tennis ball or an empty bottle—under the water with your hands and then let it go? Will it stay there, sink, or come back up?

What forces do you think are acting on it? Try to draw a simple diagram to show all the forces involved. You can use arrows to show the direction of the forces.							

The purpose of this question is to encourage students to visually represent the situation.

Recall a situation in a 'tug-of-war game', when equal forces are applied in opposite directions, the knot on the rope stays in the same place. If more force is applied in one direction, the knot moves in that direction. The concept of net force is used to understand the direction in which the knot moves. Students should apply the same concept of "net forces" to understand the floating object in both situations (floating and underwater). In this situation, the direction of forces is vertical, instead of horizontal, which was the case for the tug-of-war game.

Task 1: Measuring the weight of an object underwater:

Materials: (i) Object/ Stones (roughly the size of half the palm) (ii) Any objects that float (eg. small plastic container with some stones, see Figure. 1) (iii) Spring balance (for weighing) (iv) 2 Beakers (v) Water (vi) Salt (for salt-water)

[A] Take at least 3 objects (e.g. stones) of various sizes (roughly the size of half of your palm), tie them with a thread and measure their weight outside and inside water using a spring balance (see, Figure 1). Make sure each stone is tied to a separate thread and labelled properly. Now repeat the process by taking any two objects that float in water.

Figure 1

[B] Prepare a salt-water solution by mixing salt into the same quantity of water similar to the beaker above, until the solution is saturated. Repeat the weight measurements of all the objects in a saturated salt-water solution.

Fill in your observations for the weights obtained in Table 1.

No.	Condition	Object's weight (m* g) outside water (N)	Object's weight (m* g) inside water (N)	Object's weight (m* g) inside salt-water (N)	Difference in weight (outside v/s inside) For For water salt-water	
1	Sinking					
2	Sinking					
3	Sinking					
4	Floating					
5	Floating					

Table 1

Q 3. For a given	object, is the we	eight in air differe	ent from its weigh	ht in water? W	hich physical	property do
you think explains	s this difference?					

For an object in water, the 'weight of the object' is the downward **force** caused by Earth's gravitational pull. We observe that the weight of the stone decreases inside water. The decrease in weight (downward force) can be explained if we consider that there must be an upward force acting on the object, which is partially balancing its weight (or fully in the case of floating objects). *This upward force is called the buoyant force or in general buoyancy*.

Note that buoyancy isn't just in water—air is also a fluid. The same principle applies to balloons, birds, and airplanes, which experience buoyant force in the air.

Allow students to think and discuss their ideas. Help them understand that when the object is in water, the buoyant force acts upwards on the object. This buoyant force partially balances the weight of the object. As a result, the weight of the object will show a reduced reading on the spring balance when it is underwater. The weight of the object underwater is called the apparent weight, which is also the reduced weight.

The difference between the two readings (the weight in air and the weight underwater) gives us the buoyant force acting on the object. This is based on the natural definition of apparent weight, which is the reduction of the object's weight underwater.

Apparent Weight = Actual Weight - Buoyant Force.

Q 4. How does the buoyant force compare to the actual weight of the object (for both cases, sinking and floating)? Write the relation between them. Looking at this relation, when will an object float, and when will it sink?

For sinking, the magnitude of the buoyant force is less than the weight of the object. In the case of a floating object, the magnitude of the buoyant force is equal to or greater than the weight of the object in air.

Sinking: F_b < Weight of object Floating: $F_b \ge$ Weight of object

Q 5. Compare the weight of any given object under water and salt-water. Are they same or different? Also, compare the buoyant force in water and in saltwater for each object.

You will notice that the object's weight in salt-water is less than in regular water. This will also be reflected in the difference in the object's buoyant force in the two liquids. This is the reason why objects float more easily in denser fluids, since salt-water is denser than regular water. This demonstrates that one of the factors affecting the buoyant force on an object is the density of a fluid.

Let us now check if the buoyant force varies with different heights inside a liquid.

Q 6. Take one of the stones and measure its weight at different depths in the water. What do you observe? What conclusions can you draw from this?

It is observed that the weight of an object underwater stays the same, no matter how deep it is placed. This means that the buoyant force is independent of the height underwater.

Task 2: What is the origin of buoyant forces?

Take an empty plastic bottle and make small holes at different levels, from the bottom to the top. Then, fill the bottle with water. Observe how far the water stream from each hole falls (Figure 2).

Figure 2

You will notice that the water stream from the top hole travels the shortest distance, while the stream from the bottom hole travels the farthest.

If time allows, the facilitator should demonstrate this activity. Only once for all the groups is enough.
Q 7. Why does the water from the bottom hole travel the farthest?
The stream from the bottom hole goes the farthest because the pressure is higher at greater depths in a flui This higher pressure pushes the water out with more force, making the stream travel farther.
Q 8. What does this tell us about the pressure in a fluid at different depths?

This is a crucial point where the teacher emphasises the concept of change in pressure with depth, because it is crucial to understand the origin of the buoyant force.

Pressure in a fluid increases with depth. This means that the pressure at the bottom of an object in a fluid is higher than the pressure at the top. As a result, the water pushes upward on the bottom of the object with more force than it pushes downward on the top. **This difference in force creates a net upward force called the buoyant force.**

Additional Notes and more details:

- Pressure is the force acting on a surface per unit area.
- In a fluid, pressure is caused by the weight of the liquid above a surface.
- This pressure is exerted in all directions—up, down, and sideways.

However, pressure is not the same at all points in a fluid. It increases with depth because the deeper you go, the more liquid there is above that point. So, more weight means more pressure.

In the case of a submerged object, like a plastic container in water:

- The pressure at the bottom of the container is greater than at the top.
- The horizontal forces cancel each other out.
- The vertical pressure difference creates a net upward force, this is the **buoyant force or upthrust.**

So far, we have explored the concept of buoyant force in fluids. We conducted an activity to measure its magnitude and examined the concept behind its origin.

"The buoyant force arises from the pressure difference in fluids. The pressure on the bottom of an object submerged in the fluid is greater than the pressure on the top, creating a net upward force. This upward force is what we refer to as the buoyant or upthrust force."

In Task 1 (Q5), we already saw that the density of a liquid affects the buoyant force. Now, let us consider other factors that influence the buoyant force.

Q.9. What do you think are some properties of the object and the fluid that can change or influence the buoyant force? Write your answers separately for the object and the fluid.

Let the students explore and share their ideas about which properties might affect the buoyant force. For example:

- For objects: weight, volume, density, temperature, material, shape, surface area, colour, whether the object is hollow or porous.
- For fluids: density, volume, temperature, viscosity, and colour.

The following tasks are designed to explore which of these factors affect the buoyant force and how they do so. In each task, we will focus on one specific factor.

Let's explore some of the properties affecting the buoyant force that you have listed.

Task 3: Does the buoyant force depend upon the weight of the object?

A small stone sinks right away, while a large ship floats. This makes us wonder, "Does the buoyant force on an object depend on its weight?" Let's find out.

When asked to predict, students might assume that lighter objects float and heavier ones sink. Teachers should encourage them to test this idea through experiments.

To test if buoyant force depends on weight, we need to consider objects with different weights *but keep other factors the same*, *so we only test one variable*. In this case, we will keep the volume the same. In the table below, we provide the weight measurements of 5 different plastic containers with closed lids (Figure 3), each having a volume of 100 cm³. We added different number of marbles to each container, so that the weight of each container was different. Then, we measured the weight of the container both outside and inside the water using a spring balance, just like you did in Task 1. (Here, we are not performing the task but only using the already obtained readings)

Figure 3

Object no.	Volume of the container	Object's Weight (m* g) outside	Object's Weight (m* g) inside	Buoyant Force
	(cm ³)	water (N)	water (N)	
1	100	110*9.8= 1078	35*9.8= 343	
2	100	125*9.8= 1225	50*9.8= 490	
3	100	135*9.8=1323	60*9.8= 588	
4	100	150*9.8= 1470	75*9.8= 735	
5	100	220*9.8= 2156	145*9.8= 1421	

Table 2

Q 10. What relationship do you observe between the magnitude of buoyant force and the weight of objects (note that every object has the same volume)?

After calculating the buoyant force for objects with different weights, students should notice that the difference between actual weight and apparent weight stays the same for all containers. This shows that for objects with the same volume but different weights, the buoyant force does not change, indicating that buoyant force does not depend on the weight of the object.

Now, we will check if the buoyant force depends on the volume of the object.

Task 4: Does the buoyant force depend on the volume of an object?

In the previous task, we explored how the buoyant force relates to the weight of the object. Now, let's investigate whether the buoyant force changes with the volume of the object.

We will start by taking objects of the same weight but different volumes, then follow the same procedure as in Task 2 to calculate the buoyant force. In the table below, we provide the weight and volume measurements of 5 objects. These objects are cylindrical in shape and made from different materials: iron, ceramic, plastic, wood, and foam. The dimensions, weight, and volume of these objects are listed in the table below.

Object no.	Material	Radius (cm)	Height (cm)	Volume of the object (cm³)	Object's Weight (m * g) outside water (N)	Object's Weight inside water (N)	Buoyant Force
1	Iron	1.5	3.8	27	100*9.8= 980	73*9.8= 715.4	
2	Clay	2.0	3.6	45	100*9.8= 980	55*9.8= 539	
3	Plastic	2.2	4.0	60	100*9.8= 980	40*9.8= 392	
4	Wood	2.5	4.1	80	100*9.8= 980	20*9.8= 196	
5	Foam	2.8	4.1	100	100*9.8= 980	0*9.8= 0	

Table 3

Q 11. What relationship do you observe between the magnitude of the buoyant force and the volume of objects (note that every objects has the same weight)?

It is observed that for objects with the same weight but different volumes, the buoyant force is different. As the volume increases, the buoyant force also increases. This shows that the buoyant force depends on the volume of the object submerged in the liquid, and not on its weight.

In Table 3, the important data for calculating the buoyant force is the weight of the objects, both outside (in air) and in water. The other details help students understand the type, size, and scale of the objects used in the experiment.

From Tasks 1, 2, and 3, it is clear that the buoyant force depends on the density of the fluid and the volume of the object. It does not depend on the weight of the object that is submerged.

Task 5 (Extended Task):
Density: Sinking & Floating
In the previous tasks, we explored how weight and volume affect the buoyant force.
If we change the weight of an object while keeping its volume constant, the buoyant force for these objects (changes/ does not change).
If we change the volume of an object while keeping its weight constant, the buoyant force for these objects (changes/ does not change).
From Task 1, recall that for a floating object, the magnitude of the buoyant force is (more/ less/ equal) to its weight in air. So, to keep an object floating, the magnitude of the buoyant force should always be (more/ less/ equal) to the weight of the object. An object will sink if the magnitude of the buoyant force is (more/ less/ equal) than the object's weight outside water.
Let us now explore how the density (ϱ) of an object affects whether it will float or sink.
Unlike in Tasks 3 and 4, where we studied how weight and volume affect the buoyant force, in this task, we will focus on how the density of an object affects floating or sinking .
Place an empty sealed plastic container (like the one shown in Figure 3) in water. At first, the container floats on the surface of the water. Now, add some objects into the container, these could be marbles, small stones sand, or even water. As you keep adding objects, the container starts to submerge. Keep adding and observe how the position of the container in water changes.
(If the time is not sufficient, then this task can also be done by observing the result from Figure 3. The figure has six panels. Each panel shows a plastic container with marbles placed in a beaker filled with water. The same container is used in all six panels, but the number of marbles inside the container varies).
Q 12. When objects are added to the plastic container, does the weight or the volume of the container change? How?

When objects are added to an empty container, its weight increases. Make sure students observe that while the volume of the material inside the container changes, the outer volume of the container stays the same. This is because we are only changing what's inside, not the container itself.

Also, it's important to understand that an object can either float (when the buoyant force balances the gravitational force) or sink. It cannot do both at the same time—there's no such thing as an object being partly floating and partly sinking.

Q 13. How does adding	the marbles in the contain	ner affect its density?	When do you think the	container will
sink?				

In this situation, the total weight includes the weight of the container plus the weight of the stones or marbles placed inside it.

Even though the weight increases, the outer volume of the container stays the same. This causes the average density of the container (including its contents) to increase.

The container will sink when the buoyant force is no longer able to support the total downward force of gravity. This happens when the average density of the container becomes greater than the density of water.

Note: The density of the container's material isn't changing—we're still using the same container. What's changing is the average density of the entire object (container + marbles/stones).

WHY LARGE SHIPS FLOAT?

Think of large cargo ships. Even though they are made of heavy materials like iron and steel (which are denser than water), they don't sink. This is because their average density is kept low by having large hollow spaces inside. These spaces reduce the overall density, allowing the ship to float. So, it's not just the material's density that matters, but the average density of the whole object.

References

- Gibb, Natalie. (2019, August 22). Buoyancy in Salt Water vs Fresh Water. Retrieved from https://www.liveabout.com/buoyancy-salt-water-vs-fresh-water-2962936
- https://www.britannica.com/science/buoyancy
- https://www.khanacademy.org/science/physics/fluids/buoyant-force-and-archimedes-principle/a/buoyant-force-and-archimedes-principle-article