LU 8.1. Euclid's game

यूक्लिड का खेल

Overview

रूपरेखा

Here is a game that is based on the Euclidean algorithm to find the highest common factor of two natural numbers. In this game, students not only play the game making moves that correspond to steps of the Euclidean algorithm but also engage in doing mathematics by making conjectures, giving counter-examples, refuting conjectures and proving some results.

An important idea is that we need to look for counter-examples to conclude that a statement is not true. As a part of this unit, you should talk to the students and try to differentiate between a true prediction and a mathematical result. Also discuss how in the case of establishing the correctness of a mathematical result, giving examples is not enough; while in the case of proving a result wrong, counter-examples (even one) are enough.

यहाँ हम एक खेल खेलेंगे, जो दो प्राकृतिक संख्याओं का महत्तम समापवर्तक ज्ञात करने के यूक्लिडियन एल्गोरिथ्म पर आधारित है। इस खेल में छात्र न केवल यूक्लिडियन एल्गोरिथ्म के चरणों के अनुरूप अपनी चालें चलेंगे, बल्कि अनुमान लगाना, प्रति-उदाहरण देना, अनुमान का खंडन करना और परिणाम साबित करना जैसी गणितीय संक्रियाएँ भी करेंगे।

यहाँ एक महत्वपूर्ण विचार यह है कि हमें यह पता लगाने के लिए कि कोई कथन सत्य नहीं है, प्रति-उदाहरणों की तलाश करने की आवश्यकता होती है । इस इकाई के एक भाग के रूप में, आपको छात्रों से बात करनी चाहिए और प्रयास करना चाहिए कि वे एक सच्ची भविष्यवाणी और गणितीय परिणाम के बीच अंतर कर सकें । यह चर्चा भी करें कि कैसे गणितीय परिणाम की यथार्थता स्थापित करने के लिए तो अनेक उदाहरण देना भी पर्याप्त नहीं होता है, जबिक परिणाम को गलत साबित करने के लिए केवल एक प्रति-उदाहरण देना पर्याप्त होता है।

Minimum time required: 3 sessions of 40 minutes

न्यूनतम समय: 40-40 मिनट के तीन सत्र

Type of Learning Unit: Classroom अधिगम इकाई का प्रकार : कक्षा-आधारित

Unit-specific objectives:

इकाई-विशिष्ट उद्देश्य:

- (i) To observe patterns in numbers and articulate the observed pattern clearly संख्याओं में विन्यासों (पैटर्न) का अवलोकन और प्रेक्षित विन्यास को स्पष्ट रूप से व्यक्त करना
- (ii) To look for counter-examples to refute a conjecture किसी अनुमान का खंडन करने के लिए प्रति-उदाहरणों की तलाश करना
- (iii) To understand that examples are not sufficient to prove a conjecture यह समझना कि किसी अनुमान को सही साबित करने के लिए अनेक उदाहरण देना भी पर्याप्त नहीं होता है
- (iv) To understand that just one counter-example is sufficient to disprove a conjecture यह समझना कि किसी अनुमान को गलत साबित करने के लिए मात्र एक प्रति-उदाहरण ही देना पर्याप्त होता है
- (v) To come up with a logical argument (i.e. proof) in support of a conjecture

किसी अनुमान के समर्थन में तर्कपूर्ण दलील (अर्थात प्रमाण) प्रस्तृत करना

(vi) To understand the relation between taking successive differences and the Euclidean algorithm to find the highest common factor (HCF) of two numbers

दो संख्याओं का महत्तम समापवर्तक (HCF) ज्ञात करने के लिए क्रमिक अंतर लेने और युक्लिडियन एल्गोरिथ्म के बीच के संबंध को समझना

Links to curriculum

पाठ्यक्रम से संबंधित

NCERT Class 6 Mathematics	NCERT Class 10 Mathematics
NCERT गणित कक्षा 6	NCERT गणित कक्षा 10
Chapter 3: Playing with numbers (Nov 2022)	Chapter 1: Real numbers (Nov 2022)
The concept of factors, relatively prime (co-prime)	Euclid's Lemma
numbers and multiples	अध्याय 1: वास्तविक संख्याएँ (नवंबर 2022)
अध्याय 3: संख्याओं का खेल (नवंबर 2022)	यूक्लिड का लेम्मा
गुणनखंडों की अवधारणा, अपेक्षाकृत अभाज्य (असहभाज्य) संख्याएँ	
और गुणज	
The concept of Highest Common Factor (HCF)	
महत्तम समापवर्तक (म.स.) की अवधारणा	

Introduction

परिचय

Playing games is a lot of fun. Today you are going to play a game that involves numbers, and based on these numbers you will find out a way to win the game, always!

खेल खेलना बहुत मजेदार होता है। आज आप एक खेल खेलने जा रहे हैं जिसमें संख्याएँ शामिल हैं, और इन संख्याओं के आधार पर आप हमेशा इस खेल को जीतने का तरीका खोजेंगे।

Materials required: Blackboard, chalk and sheets of paper.

सामग्री: ब्लैकबोर्ड, चॉक और कागज़ की शीट।

Task 1: Play the Euclid's game

कार्यकलाप 1: आइए, यूक्लिड का खेल खेलें

- 1. This is a two-player game. यह दो खिलाडियों का खेल है।
- 2. The rules of the game are as follows:

खेल के नियम इस प्रकार हैं :

- You can decide who plays first. The first player, say Player 1, writes down a number that is between 1 and 100, including both. Let's call this number 'A'. The second player, say Player 2, can write down another number of his/her choice. Let's call this number 'B'.
 - आप तय कर सकते हैं कि कौन खेल शुरू करेगी। पहली खिलाड़ी, जिसे हम खिलाड़ी 1 कह सकते हैं, 1 और 100 के बीच की कोई संख्या लिखती है जिसमें ये दोनों संख्याएँ भी शामिल हो सकती हैं। आइए हम इस संख्या को 'A' कहते हैं। दूसरी खिलाड़ी, जिसे हम खिलाड़ी 2

- कहते हैं, उसकी पसंद की एक और नंबर लिख सकती हैं। आइये इस संख्या को 'B' कहते हैं।
- Now, the first player will write the number (A B) or (B A), whichever is positive. Let's call this number 'C'.
 - अब, पहली खिलाड़ी संख्या (A B) या (B A) लिखेगी, जो भी इनमें से धनात्मक हो। आइए इस संख्या को 'C' कहते हैं।
- Next, it is the second player's turn. He/She has a choice. He/She can either write the difference between *C* and *A* or the difference between *C* and *B*. However, if one of these differences is already written in the list (i.e., if it is equal to *A* or *B* or *C*) then it cannot be written again. (All differences are to be taken positive)
 - इसके बाद, अब दूसरे खिलाड़ी की बारी है। उसके पास एक विकल्प है। वह या तो C और A के बीच का, या फिर C और B के बीच का अंतर लिख सकता/ सकती है। लेकिन यदि इनमें से कोई संख्या पहले से ही सूची में है (अर्थात, यदि यह A या B या C है) तो इसको दोबारा नहीं लिखा जा सकता (इस प्रकार लिए गए सभी अंतरों के धनात्मक मान लिए जाते हैं)
- Similarly, in subsequent turns, the players take turns to write a number which is the difference between any two numbers written in the list, provided the number itself is not already present in the list.
 - इसी तरह, बाद की पारियों में, प्रत्येक खिलाड़ी अपनी पारी पर दी गई सूची में से किन्ही भी दो संख्याओं के बीच अंतर लिखती है बशर्ते कि वह संख्या सूची में पहले से ही मौजूद न हो।
- The game ends when it is not possible to write any new number.
 खेल तब समाप्त होता है जब कोई नई संख्या लिखना संभव नहीं होता है।
- The person who wrote the last number will be the winner. वह खिलाड़ी जिसने अंतिम संख्या लिखी, वह विजेता होगी।

Let us look at a sample run of the game.

आइए, हम इस प्रकार का एक खेल खेल कर देखते हैं:

- Suppose, the first player writes 12. The second player has 99 choices to choose his/her number. (as the upper limit is 100).
 - मान लीजिए, पहला खिलाड़ी 12 लिखता है। दूसरे खिलाड़ी के पास अपनी संख्या चुनने के लिए 99 विकल्प हैं (क्योंकि यहाँ संख्याओं की ऊपरी सीमा 100 ली गई है)।
- Suppose, the second player chooses 16, then the first player can only write 4, i.e. the difference between 16 and 12.
 - मान लीजिए, दूसरा खिलाड़ी 16 चुनता है, तो पहला खिलाड़ी केवल 4 लिख सकता है, जो की 16 और 12 के बीच का अंतर है।
- The second player then writes 8, the difference between 12 and 4. Note that the player could not have written the difference between 16 and 4, as 12 is already in the list.
 - अब दूसरा खिलाड़ी संख्या 8 लिखता है, जो 12 और 4 के बीच का अंतर है। नोट कीजिए कि दूसरा खिलाड़ी 16 और 4 के बीच का अंतर नहीं लिख सकता था, क्योंकि 12 पहले से ही सूची में मौजूद है।
- Now there is no possibility of writing new numbers, so the game ends with the numbers 4, 8, 12, and 16 appearing in the list (12, 16, 4, 8 in the order of appearance).
 - अब नए नंबर लिखने की कोई संभावना नहीं है, इसलिए खेल समाप्त होता है। संख्याएँ 4, 8, 12, और 16 सूची में दिखाई दे रही हैं (प्रकट के क्रम में कहें तो 12, 16, 4, 8)।
- There are four numbers in the list, and here the second player is the winner, as he/she wrote the

last number 8.

सूची में चार नंबर हैं, और दूसरा खिलाड़ी विजेता है, क्योंकि उसने अंतिम संख्या 8 लिखी है।

Play this game with your partner multiple times. Study the lists of numbers that you got for each game and record your observations in the table below. For the last column, where you record the winner, mention whether Player 1 (who chose the first number) won or Player 2 (who chose the second number) won.

इस खेल को अपने साथी के साथ कई बार खेलें। उन संख्याओं की सूचियों का अध्ययन करें जो आपको प्रत्येक बार खेल में प्राप्त होती हैं और उन्हें नीचे दी गई तालिका में भरें। अंतिम कॉलम में, जहां आप विजेता का नाम लिखते हैं, यह उल्लेख करें कि खिलाड़ी 1 जीता (जिसने पहली संख्या चुनी थी) या खिलाड़ी 2 जीता (जिसने दूसरी संख्या चुनी थी)।

	lumbers ह संख्या	The smallest number in	The largest number in your	All numbers in a sequence (in ascending	How many numbers are there in your	Winner
Player 1 खिलाड़ी 1	Player 2 खिलाड़ी 2	your sequence सूची में सबसे छोटी संख्या	sequence	order) सूची में सभी संख्याएँ (आरोही क्रम में)	sequence? सूची में कितनी संख्याएँ हैं ?	विजेता

Table 1

The teacher can also make this table on the board. After all the students finish playing the game a few times, collect some responses from the students to fill in the table. (It is fun to play the game the first few times. However teacher should stop the game and start a discussion, when he/she feels that the students are getting tired of bored of repeating the game.)

शिक्षक इस तालिका को बोर्ड पर भी बना सकते हैं। जब सभी छात्र कुछ बार खेल खेल चुके हों, तो छात्रों से उनकी कुछ प्रतिक्रियाएँ एकत्र करें और तालिका में भरें। (खेल को पहले कुछ बार खेलने में मज़ा आता है तथापि जब भी शिक्षक को लगे कि खेल को दोहराते हुए छात्र थक गए हैं, या ऊब गए हैं तो खेल बंद कर देना चाहिए और चर्चा शुरू करनी चाहिए।)

Please see the section- 'Mathematical and pedagogical explanations' before recording students' responses on the board. Ensure that a sufficient number of examples that help generate some conjectures, are on the board.

कृपया बोर्ड पर छात्रों की प्रतिक्रियाएँ रिकॉर्ड करने से पहले *'गणित और शिक्षा-विज्ञान से सम्बंधित स्पष्टीकरण'* अनुभाग देखें। सुनिश्चित करें कि कुछ अनुमान लगाने लायक पर्याप्त संख्या में उदाहरण बोर्ड पर मौजूद हैं।

The teacher can then invite the students to look for patterns in the filled table. Ask the students to generalize the patterns and make conjectures. Write down each conjecture on the board and encourage students to examine whether it holds, by generating more examples, or it can be refuted by generating a counter-example. Help the students see that verifying the conjecture for any number of examples does not amount to a proof, and that one counter-example is sufficient to disprove a conjecture. Encourage students to come up with proofs of their conjectures.

तब शिक्षक छात्रों को भरी हुई तालिका में अंकों के आपस में संबंध (विन्यास) देखने और अनुमान लगाने के लिए आमंत्रित कर सकता है। छात्रों को विन्यास का सामान्यीकरण करके अनुमान लगाने के लिए कहें। प्रत्येक अनुमान बोर्ड पर लिखें और छात्रों को यह जाँचने के लिए प्रोत्साहित करें कि क्या और उदाहरण प्रस्तुत करके इसकी पृष्टि की जा सकती है अथवा एक प्रति-उदाहरण द्वारा इसे नकारा जा सकता है। छात्रों की इस निष्कर्ष पर पहुंचने में मदद करें कि किसी भी अनुमान के समर्थन में दिए गए कितने भी उदाहरण अनुमान को सत्यापित करने के लिए पर्याप्त नहीं होते हैं जबिक मात्र एक प्रति-उदाहरण एक अनुमान को नकारने के लिए पर्याप्त है। छात्रों को उनके अनुमानों के प्रमाण प्रस्तुत करने के लिए प्रोत्साहित करें।

Some of the conjectures that the students might come up with, and the ways to handle them are discussed in the section '*Mathematical and pedagogical explanations*'. However, it is possible that students come up with conjectures that are not listed here. In this case, take the conjectures one-by-one, verify, refute or prove the conjecture as the case may be, and familiarise students with these processes.

छात्र कुछ अनुमान प्रस्तुत कर सकते हैं, उनके बारे में किस प्रकार चर्चा की जा सकती है इस विषय पर 'गणित और शिक्षा-विज्ञान से सम्बंधित स्पष्टीकरण' अनुभाग में बात की गई है। तथापि, यह संभव है कि छात्र कुछ ऐसे अनुमानों के साथ आएँ जो यहां सूचीबद्ध नहीं हैं। उस स्थिति में अनुमानों को एक-एक करके लें, उन्हें सत्यापित करें, खंडित करें या प्रमाणित करें जैसी भी स्थिति हो, और इन प्रक्रियाओं से छात्रों को परिचित कराएँ।

Task 2: Predict the sequence

कार्यकलाप 2: आइये क्रम की भविष्यवाणी करें

Let us assume that following are the initial numbers in the game. Based on these, can you predict the numbers that you will arrive at, while playing the game?

आइए, हम मान लेते हैं कि निम्नलिखित संख्याएँ खेल की शुरुआती संख्याएँ हैं। इनके आधार पर क्या आप उन संख्याओं का अनुमान लगा सकते हैं जिन तक खेल खेलते हुए आप पहुँचेंगे ?

(**Hint:** If you are stuck, look at the table you just made. See if there is any relationship between the initial numbers and the numbers in the list.)

(संकेत: यदि आप अनुमान नहीं लगा पा रहे हैं, तो आपने जो तालिका अभी-अभी बनाई है उसे देखें । देखें कि सूची में प्रारंभिक संख्या और अन्य संख्याओं के बीच क्या कोई संबंध है)

- 1. Predict all the numbers in the list if : सूची में सभी नंबरों की भविष्यवाणी करें यदि :
 - i. The initial numbers are 9 and 15. प्रारंभिक संख्याएँ 9 और 15 हैं।
 - ii. The initial numbers are 20 and 9. प्रारंभिक संख्याएँ 20 और 9 हैं।
 - iii. The initial numbers are 13 and 17. प्रारंभिक संख्याएँ 13 और 17 हैं।
 - iv. The initial numbers are 7 and 35. प्रारंभिक संख्याएँ 7 और 35 हैं।
- 2. How did you predict the numbers for each example? Did you notice any patterns across the examples?

आपने	प्रत्येक	उदाहरण	के	लिए	संख्याओं	की	भविष्यवाणी	कैसे	की	?	क्या	आपने	इन	उदाहरणों	में	किसी	भी	विन्यास	को	पाया	?
																					_
																					_

The teacher then can engage students in a discussion on how can they justify that their strategy for finding the numbers in the list will always work. Please study the section 'Mathematical and pedagogical explanations' for suggestions/ideas on how to lead this discussion.

शिक्षक फिर छात्रों से इस पर चर्चा कर सकते हैं कि वे सूची में दी गई संख्याएँ खोजने की अपनी रणनीति को हमेशा प्रभावी रहने वाली कैसे सिद्ध करेंगे। इस चर्चा को आप आगे कैसे बढ़ाएँगे इस संबंध में सुझावों/ विचारों के लिए कृपया अनुभाग 'गणित और शिक्षा-विज्ञान से संबंधित स्पष्टीकरण' का अध्ययन करें।

3. Now that you know the strategy for finding the list, can you predict the strategy that will ensure that one of the players will always win the game? (Which player can adopt this strategy and always win?) अब जब आप सूची की संख्याओं को पता लगाने की तरकीब जान चुके हैं तो क्या आप एक ऐसी तरकीब का पूर्वानुमान लगा सकते हैं जो यह सुनिश्चित करे कि खिलाड़ियों में से एक तय खिलाड़ी हमेशा इस खेल को जीतेगा ? (कौन-सा खिलाड़ी इस रणनीति को अपना सकता है और हमेशा जीत सकता है ?)

Mathematical and pedagogical explanations

गणित और शिक्षाविज्ञान से सम्बंधित स्पष्टीकरण

The activity helps the students engage in some fundamental practices of mathematics, such as observing patterns, making conjectures, verifying or refuting the conjectures, and so on. The novelty of the activity is to see how mathematical ideas emerge in the context of the game. The game begins with a simple task such as subtraction of two numbers. At the end of one or two games the student begins to grasp that the process leads to a finite sequence of numbers. Moreover, one starts figuring out that the numbers that emerge in each game depend on the choice of the initial pair of numbers. After looking for patterns, the students will realize the connection between the HCF of the initial pair of numbers with the list of numbers obtained.

इस क्रियाकलाप से छात्रों को गणित की कुछ मूलभूत प्रक्रियाओं, जैसे पैटर्न का अवलोकन करना, अनुमान लगाना, अनुमानों का सत्यापन या खंडन करना, और इसी तरह की अन्य प्रक्रियाओं/पद्धितयों में संलग्न होने में मदद मिलती है। इस गतिविधि की नवीनता यह देखने में है कि गणितीय विचार खेल के संदर्भ में किस प्रकार उभरते हैं। खेल एक सरल कार्य से शुरू होता है जैसे दो संख्याओं को घटाकर। एक या दो बार खेल खेल लेने के बाद, छात्र समझना शुरू कर देता है कि यह प्रक्रम संख्याओं के एक परिमित अनुक्रम की ओर ले जाता है। इसके अलावा, छात्र इस निष्कर्ष पर पहुँचने लगते हैं कि खेल की प्रत्येक पारी में उभरने वाली संख्याएँ, संख्याओं की प्रारंभिक जोड़ी के चयन पर निर्भर करती हैं। विन्यास के अध्ययन के बाद, छात्रों को संख्याओं की प्रारंभिक जोड़ी के बीच संबंध का एहसास होगा।

To understand the mathematical significance of the students' responses, we consider different ways of thinking that students might exhibit and propose some conjectures that they might come up with. In the pedagogical discussion column, we provide explanations for some of the conjectures, and suggestions to

lead the discussion.

छात्रों की प्रतिक्रियाओं के गणितीय महत्व को समझने के लिए, हम आगे सोचने के उन विभिन्न तरीकों पर विचार करेंगे जिनका प्रदर्शन छात्र कर सकते हैं और कुछ अनुमान प्रस्तुत करेंगे जो छात्र ला सकते हैं। शिक्षा-विज्ञान चर्चा कॉलम में, हम कुछ अनुमानों के लिए स्पष्टीकरण प्रदान करेंगे, और चर्चा को आगे बढ़ाने के लिए सुझाव देंगे।

Students' observations	Possible Pedagogical Discussion
छात्रों के अवलोकन	संभावित शिक्षा-विज्ञान चर्चा
The largest number in the list is the same	Ask for the reason why the larger initial number remains the largest number in the list till the end. कारण पूछें कि प्रारंभिक जोड़ी की बड़ी संख्या अंत तक सूची की सबसे बड़ी संख्या क्यों बनी रहती है ?
as the largest number in the initial pair of numbers. अनुक्रम में सबसे बड़ी संख्या वही है जो संख्याओं की प्रारंभिक जोड़ी में थी।	Explanation: As we are subtracting numbers in consecutive steps within the set of positive integers, the numbers obtained will always be smaller than the largest number in the initial pair of numbers.
	स्पष्टीकरण: क्योंकि हम क्रमिक चरणों में धन पूर्णांकों के समुच्चय के भीतर लगातार संख्या को घटा रहे हैं, अतः प्राप्त संख्या हमेशा प्रारंभिक संख्याओं की जोड़ी में सबसे बड़ी संख्या से छोटी रहेगी।
The list contains only the multiples of the smallest number in the final list. सूची में केवल अंतिम सूची में प्राप्त सबसे छोटी संख्या के गुणकों का समावेश है।	 Ask to verify with other examples in the table. तालिका से अन्य उदाहरण लेकर इस तथ्य को सत्यापित करने के लिए कहें। Ask whether they can come up with a counterexample. पूछें कि क्या वे कोई प्रति-उदाहरण सोच कर बता सकते हैं। Ask for the reason why this is the case. कारण पूछें कि ऐसा क्यों है ?
In the initial pair of numbers, if one of the numbers is a multiple of the other, then the list contains only the multiples of the smaller initial number. संख्याओं के प्रारंभिक जोड़े में, यदि एक संख्या दूसरी का गुणक है तो सूची में केवल संख्याओं की प्रारंभिक जोड़ी में से छोटी संख्या के गुणक शामिल हैं।	 Ask to take a few more initials pairs of numbers, where one is a multiple of the other and verify that it works every time. संख्याओं के कुछ और प्रारंभिक जोड़े लेने के लिए कहें, जहां एक दूसरे का गुणज है और सत्यापित करें कि यह हर बार काम करता है। Look for a counter-example—a set of two numbers
E.g. For the initial numbers 7 and 35, the list obtained contains only multiples of 7.	which will refute the above conjecture. This is an opportunity to discuss whether not finding a counter-example amounts to a proof of the conjecture.

उदाहरण के लिए, प्रारम्भिक संख्याओं 7 और 35 के लिए अनुक्रम में केवल 7 के गुणक शामिल होंगे। एक प्रति—उदाहरण अर्थात दो संख्याओं के समुच्चय का एक ऐसा उदाहरण तलाश करें जो उपरोक्त अनुमान का खंडन करता हो। यहाँ यह चर्चा करने का अवसर है कि यदि प्रति-उदाहरण नहीं मिल रहा है तो क्या यह एक तरह से अनुमान के सत्य होने का प्रमाण है या नहीं।

If the initial pair of numbers are co-prime (i.e., 1 is the only common factor), then the list consists of all the numbers from 1 to the larger initial number.

यदि प्रारंभिक संख्याएँ असहभाज्य हैं (यानी, केवल संख्या 1 ही उनका सामान्य गुणनखंड है), तो फिर सूची में 1 से लेकर संख्याओं की प्रारंभिक जोड़ी की बड़ी संख्या तक की सभी संख्याएँ शामिल होंगी।

- Ask to take a few more initial pairs of co-prime numbers and verify that it works every time.
 असहभाज्य संख्याओं के कुछ और प्रारंभिक जोड़े लेने के लिए कहें और सत्यापित करें कि यह तथ्य हर बार लागू होता है।
- Look for a counter-example—a set of two numbers which will refute the above conjecture. This is an opportunity to discuss whether not finding a counter-example amounts to a proof of the conjecture.

एक प्रति-उदाहरण अर्थात दो संख्याओं के समुच्चय का एक ऐसा उदाहरण तलाश करें जो उपरोक्त अनुमान का खंडन करता हो। यहाँ यह चर्चा करने का अवसर है कि यदि प्रति -उदाहरण नहीं मिल रहा है तो क्या यह एक तरह से अनुमान के सत्य होने का प्रमाण है या नहीं।

 Note that students may not consider 1 as a common factor, and therefore while testing this conjecture they might not have co-prime numbers as the initial pair.

ध्यान दें कि हो सकता कि छात्र 1 को सामान्य गुणनखंड न मानते हों और इसलिए अनुमान का परीक्षण करते समय संख्याओं की प्रारंभिक जोड़ी में असहभाज्य संख्याएँ न हों।

- Ask to take a few more examples of similar kind and verify that it works every time.
 इसी तरह के कुछ और उदाहरण लें और सत्यापित करें कि क्या हर बार यह सिद्धान्त लागू होता है।
- Ask whether the two numbers in the pair have any other common factor. Ask them whether they want to modify the conjecture. (Note that the conjecture in this particular form is not true. When we start with initial numbers 12 and 16, 2 is the common factor in both the numbers but does not appear in the final list.)

पूछें कि क्या कोई अन्य ऐसी संख्या है जो जोड़ी की दो संख्याओं का (उभयनिष्ठ) गुणनखंड हो ? उनसे पूछें कि क्या वे अपने अनुमान को संशोधित करना चाहते हैं। (नोट करें कि इस विशिष्ट रूप में अनुमान

If the initial pair of numbers has a common factor, d, then the smallest number in the list is d.

यदि संख्याओं की प्रारंभिक जोड़ी में एक सामान्य गुणनखंड d है तो फिर सूची में सबसे छोटी संख्या d है

सत्य नहीं है। जब हम प्रारंभिक संख्याओं 12 और 16 से शुरुआत करते हैं तो 2 इन दोनों संख्याओं का उभयनिष्ठ (common) गुणनखंड है किन्तु यह अंतिम सूची में दिखाई नहीं पड़ता है।)

- Ask them if there is anything special about the common factor that is the smallest number in the list.
 - उनसे पूछिए कि क्या सूची में विद्यमान सबसे छोटी संख्या में, जो उभयनिष्ठ गुणनखंड भी है, कोई विशेष बात दिखाई पड़ती है।
- Think about why the smallest number in the list is this particular factor.
 - विचार कीजिए कि सूची की सबसे छोटी संख्या यह विशिष्ट गुणनखंड ही क्यों है।

If the last three conjectures above have been articulated by the students, encourage students to come up with one conjecture that will include all these three conjectures.

यदि ऊपर दिए गए अंतिम तीनों अनुमानों को छात्रों द्वारा व्यक्त किया गया है, तो उन्हें एक ऐसा अनुमान व्यक्त करने के लिए प्रोत्साहित करें जिसमें ये तीनों अनुमान शामिल हों।

The smallest number in the list is a common factor of the initial pair of numbers.

सूची की सबसे छोटी संख्या प्रारंभिक दो संख्याओं का उभयनिष्ठ गुणनखंड है।

The smallest number in the list is the HCF of the initial pair of numbers.

सूची की सबसे छोटी संख्या प्रारंभिक जोड़ी का महत्तम समापवर्तक (HCF) है।

- Find out if this includes or contradicts any of the above conjectures.
 - यह पता लगाएँ कि क्या इससे उपरोक्त अनुमानों में से किसी का सत्यापन या विरोधाभास होता है।
- Refine, verify, or refute the conjecture. अनुमानों को परिष्कृत, सत्यापित या अस्वीकृत करें।
- Find out if this includes or contradicts any of the above conjectures.
 - यह पता लगाएँ कि क्या इससे उपरोक्त अनुमानों में से किसी का सत्यापन या विरोधाभास होता है।

Table T1

Note: When students come up with observations and conjectures, these might not be articulated clearly enough. The teacher may need to rephrase these, and ask clarifying questions to make the conjectures precise. There cannot be a standard instruction for this, and the teacher will have to think of ways of clarifying. Once a conjecture is formed, ask students to verify, refute or refine it. The next step is to think of a proof.

नोट: जब छात्र अवलोकन और अनुमान प्रस्तुत करते हैं तो हो सकता है कि वे उसे पर्याप्त स्पष्टता से व्यक्त न कर पाएँ। अनुमानों की सटीक अभिव्यक्ति के लिए हो सकता है कि शिक्षक को इसे नए तरीके से कहने और स्पष्टीकरणकारी प्रश्न पूछने की आवश्यकता हो। इसके लिए कोई मानक निर्देश नहीं हो सकता और शिक्षक को स्पष्ट करने के तरीकों के बारे में सोचना होगा। एक बार अनुमान लगा लेने के बाद छात्रों से इसे सत्यापित करने, खंडन करने या इसे परिष्कृत करने के लिए कहें। अगला कदम एक सबूत के बारे में सोचना है।

Task 3: Looking for proofs of some conjectures

कार्यकलाप 3: कुछ अनुमानों के प्रमाण की तलाश

Some students made these interesting observations after playing a few rounds of the game: कुछ छात्रों ने खेल की कुछ पारियाँ खेलने के बाद ये दिलचस्प अवलोकन प्रस्तुत किए :

Observation 1: The smallest number in the final list is the HCF of the initial pair of numbers.

अवलोकन 1: अंतिम सूची में सबसे छोटी संख्या संख्याओं की प्रारंभिक जोड़ी का महत्तम समापवर्तक (HCF) है

Observation 2: All and only the multiples of this smallest number up to the largest number appear in the list.

अवलोकन 2: इस सबसे छोटी संख्या के सभी गुणज, सूची की सबसे बड़ी संख्या तक, सूची में दिखाई देते हैं।

1. Can you figure out why this happened with every pair of numbers? क्या आप यह पता लगा सकते हैं कि प्रत्येक संख्याओं की जोड़ी के लिए ऐसा क्यों होता है ?

Let us look at the two observations.

आइए हम इन दो अवलोकनों पर निगाह डालें।

- Observation 1 says the following: अवलोकन 1 निम्नलिखित कहता है:
- a) The smallest number in the list divides both the initial numbers. सूची में सबसे छोटी संख्या दोनों प्रारंभिक संख्याओं को विभाजित करती है।
- b) The smallest number is not just any common factor, but the HCF of the two initial numbers. सबसे छोटी संख्या कोई भी सामान्य गृणनखंड नहीं है, वरन यह दो प्रारंभिक संख्याओं का महत्तम समापवर्तक (HCF) है।
- Observation 2 says the following: अवलोकन 2 का तात्पर्य निम्नलिखित है:
- a) All the numbers in the list are multiples of the smallest number in the list, सूची की सभी संख्याएँ सूची में विद्यमान सबसे छोटी संख्या के गुणक हैं,
- b) All the multiples of the smallest number up to the largest number appear in the list. सूची में सबसे छोटी संख्या के सबसे बड़ी संख्या तक के सभी गुणक दिखाई देते हैं।
- 2. We need to prove or justify these observations. Can you think about the ways of doing this? हमें इन अवलोकनों को साबित करने या उचित ठहराने की आवश्यकता है। क्या आप ऐसा करने के तरीकों के बारे में सोच सकते हैं?

The teacher could use the reasoning given below to guide the discussion with the students and to help them arrive at a proof.

शिक्षक छात्रों के साथ चर्चा में मार्गदर्शन देने और उन्हें एक प्रमाण पर पहुंचने में मदद करने के लिए नीचे दिए गए तर्क का उपयोग कर सकता है।

Observation 1a: The smallest number in the list divides both the initial numbers.

अवलोकन 1a: सूची में सबसे छोटी संख्या दोनों प्रारंभिक संख्याओं को विभाजित करती है।

Proof for Observation 1a:

अवलोकन 1a के लिए सब्त:

For positive numbers, whenever we subtract a number *A* from another (larger) number *B*, the result is less than *B*. Given that we start with two initial numbers, and form subsequent numbers by subtracting the smaller from the larger, all the numbers will be smaller than the largest number in the initial pair.

धन पूर्णांकों के लिए, जब भी हम एक संख्या A को दूसरी (बडी) सख्या B से घटाते हैं तो परिणाम B से कम होता है। यह देखते हुए कि हम दो प्रारंभिक संख्याओं से शुरूआत करते हैं और बाद की संख्याएँ बड़ी संख्या में से छोटी संख्या को घटा कर प्राप्त की जाती हैं, बाद की सभी संख्याएँ प्रारंभिक जोडी की सबसे बड़ी संख्या से छोटी होंगी।

Since we are not allowing negative numbers, the game has to stop at some stage. So there exists a smallest number in the list, which may be 1 or a number greater than 1.

चूंकि हम ऋणात्मक संख्याओं की अनुमित नहीं दे रहे हैं, इसिलए खेल को एक स्तर पर पहुँच कर रुकना होगा। अतः सूची में एक छोटी संख्या मौजूद होगी, जो 1 भी हो सकती या 1 से बड़ी कोई अन्य संख्या भी।

Let us call this smallest number *S*. If we call the initial numbers as *A* and *B*, *A* being the larger of the two numbers, observation 1a claims that *S* divides *A* and *S* divides *B*.

आइए, हम इस सबसे छोटी संख्या को S कहते हैं। यदि हम आरंभिक संख्याओं को A और B लेते हैं और इनमें A बड़ी संख्या है तो अवलोकन 1a कहता है कि संख्या S संख्या A को भी विभाजित करेगी और संख्या B को भी विभाजित करेगी।

Lets us first prove that S divides B.

आइए, पहले हम यह सिद्ध करें कि संख्या S संख्या B को विभाजित करती है।

Let us assume S does not divide B.

मान लेते हैं कि S, B को विभाजित नहीं करती है।

Then B = nS + k, with k < S By applying the division algorithm with k as the remainder.

तब, B = nS + k जहाँ k < S (यहाँ विभाजन एल्गोरिथ्म लागू किया गया है और k शेष है)।

But *S* belongs to the list. So B - nS, which is k will also belong to the list --- we get this by subtracting *S* "n times" from B.

लेकिन संख्या S सूची के अंतर्गत आती है। तो B-nS, जो k है, भी सूची से संबंधित होगी --- यह संख्या हमे B से S को "n बार" घटाकर प्राप्त होती है।

But k < S, which contradicts the fact that S is the smallest number in the list.

लेकिन k<S, जो इस बात का खंडन करती है कि S सूची में सबसे छोटी संख्या है।

That means our assumption that S does not divide B was wrong, so S divides B.

इसका मतलब है कि हमारी यह धारणा कि S, B को विभाजित नहीं करता है गलत है। अत: S, B को विभाजित करता है।

Similarly, we can show that S divides A as well.

इसी तरह, हम दिखा सकते हैं कि S, A को भी विभाजित करता है।

So, S is a common factor of A and B.

इसलिए S, A और B दोनों का उभयनिष्ठ गुणनखंड है।

Observation 1b: The smallest number is not just any common factor, but the HCF of the two initial numbers.

अवलोकन 1b: सबसे छोटी संख्या मात्र एक सामान्य गुणनखंड नहीं है, वरन यह दो प्रारंभिक संख्याओं का महत्तम समापवर्तक (HCF) है।

Proof for Observation 1b: Let us prove a statement before we proceed with the proof of observation 1b.

अवलोकन 1b के लिए सब्त: अवलोकन 1b के सत्यापन से पहले आइए हम एक अन्य कथन सिद्ध करते हैं।

Statement (I): A common factor of two numbers also divides their difference.

कथन (I): दो संख्याओं का एक उभयनिष्ठ गुणनखंड उनके अंतर को भी विभाजित करता है।

i.e. If q divides C and D, and C > D, then q divides C - D.

यानी यदि q, C और D को विभाजित करता है और C > D, तो q, C - D को भी विभाजित करता है।

Proof of Statement (I): *q* divides *C* and *D* would mean,

कथन (I) का प्रमाण: q, C और D को विभाजित करता है इसका अर्थ होगा,

Let C = rq and D = tq for some integers r and t > 0

माना कि, कुछ पूर्णांकों r और t > 0 के लिए, C = rq और D = tq

So $C - D = rq - tq = (r - t) \times q$

तो, $C - D = rq - tq = (r - t) \times q$

So, q divides C – D and hence is a common factor of the difference between C and D.

अतः q, C - D को विभाजित करता है और इसलिए C और D के बीच के अंतर का एक उभयनिष्ठ गुणनखंड है।

Coming back to observation 1b

अवलोकन 1b पर वापस आते हए

Thus, if we start with two initial numbers and q is a common factor for both, it is also a common factor of their difference. This ensures that q is a common factor of all the three numbers in the list after the first step of the game. At every subsequent step, a pair of numbers is taken from the list and the difference written down as a new number. Thus, if q is a common factor of the existing pair of numbers, it is also a factor of the new number. This ensures that if a number is a common factor of the initial numbers A and B, it is a common factor of all the numbers in the list, including the smallest number in the list S. That is, any common factor of A and B, divides S.

इस प्रकार, यदि हम दो प्रारंभिक संख्याओं से शुरू करते हैं और q दोनों का एक उभयनिष्ठ गुणनखंड है, तो यह उनके अंतर का भी एक गुणनखंड है। यह सुनिश्चित करता है कि q खेल के पहले चरण के बाद सूची में आई सभी तीन संख्याओं का सामान्य गुणनखंड है। बाद के हर चरण में सूची से संख्याओं की एक जोड़ी को लिया जाता है और उनके अंतर को एक नई संख्या के रूप में लिखा जाता है। इस प्रकार यदि q संख्याओं की मौजूदा जोड़ी का एक सामान्य गुणनखंड है, तो यह नई संख्या का भी एक गुणनखंड है। यह सुनिश्चित करता है कि यदि कोई संख्या प्रारंभिक संख्याओं A और B का एक सामान्य गुणनखंड है तो यह सबसे छोटी संख्या S सिहत सूची में शामिल सभी संख्याओं का गुणनखंड है। अर्थात, A एवं B का कोई भी सामान्य गुणनखंड S को विभाजित करता है।

So, if the HCF of initial numbers A and B is d, then d divides S and $d \le S$. However, we know that S is also a factor of A and B (Observation 1a). Hence $S \le d$. Therefore, we have S = d.

इसलिए, यदि प्रारंभिक संख्या A और B का महत्तम समापवर्तक (HCF), d है, तो d, S को विभाजित करता है और d ≤ S । तथापि, हम जानते हैं कि S, A और B का भी एक गुणनखंड है (अवलोकन 1a) । इसलिए S ≤ d । इसलिए, हमें प्राप्त होता है S = d ।

Observation 2a: All the numbers in the list are multiples of the smallest number in the list.

अवलोकन 2a: सूची की सभी संख्याएँ सूची में विद्यमान सबसे छोटी संख्या के गुणक हैं।

Proof for Observation 2a: Using the same argument used in the proof of Observation 1a, we get that the smallest number, *S*, divides any number in the list.

अवलोकन 2a के लिए सबूत: अवलोकन 1a के प्रमाण में उपयोग किए गए तर्क का ही उपयोग करते हुए हम इस निष्कर्ष पर पहुँचते हैं कि सूची में सबसे छोटी संख्या S, सूची की किसी भी संख्या को विभाजित करती है।

Observation 2b: All the multiples of the smallest number up to the largest number appear in the list.

अवलोकन 2b: सूची में सबसे छोटी संख्या के सबसे बड़ी संख्या तक के सभी गुणक दिखाई देते हैं।

Proof for Observation 2b: *S* belongs to the list, and *A* is a multiple of *S*.

अवलोकन 2b के लिए सब्त: S सूची का अंग है, और A, S का एक गुणज है।

So, A = fS

तो, *A* = *f*S

Now S and A = fS are both already in the list.

अब S और A = fS दोनों सूची में पहले से ही विद्यमान हैं।

So, fS - S = (f - 1)S is also in the list.

अतः, fS - S = (f - 1) S भी सूची में है।

Similarly, (f - 1)S - S = (f - 2)S is also in the list.

इसी प्रकार, (f - 1) S - S = (f-2)S भी सूची में है।

Continuing like this we can see that,

इसी प्रकार, तर्क जारी रखते हुए हम देख सकते हैं कि,

(f-1)S, (f-2)S, (f-3)S,, 3S, 2S also belong to the list.

(f - 1)S, (f-2)S, (f-3)S,, 3S, 2S, भी सूची के अंग हैं।

Relation to the Euclidean algorithm

युक्लिडियन एल्गोरिश्म से संबंध

Imagine you change the rules of the game in this way:

कल्पना कीजिए कि आप खेल के नियमों को इस प्रकार बदल देते हैं:

Instead of subtracting the smaller number from the largest, you could subtract a *multiple* of the smaller number from the larger. And then in the next step do the same with the multiple used and the number remaining after the subtraction. This, then, is the Euclidean algorithm for you! So, can you see why the game and therefore the Euclidean algorithm works?

छोटी संख्या को सबसे बड़ी संख्या में से घटाने के बजाए आप बड़ी संख्या में से छोटी संख्या का कोई *गुणज* घटा सकते हैं। फिर अगले चरण में प्रयुक्त गुणज और घटाने के बाद बची संख्या के साथ भी यही क्रिया दोहराई जा सकती है। तब यही आप के लिए यूक्लिडियन एल्गोरिथ्म है! तो, क्या आप

देख सकते हैं कि यह खेल और यूक्लिडियन एल्गोरिथ्म क्यों काम करता है ?

Points to Ponder

विचारणीय बिन्दू

1. Do all pairs of numbers allow for a winning strategy? If not, what kinds of numbers will allow for a winning strategy?

क्या संख्याओं की सभी जोड़ियाँ विजयी रणनीति अनुमत करती हैं ? यदि नहीं, तो किस प्रकार की संख्याएँ विजयी रणनीति अनुमत करेंगी ?

2. What happens if you allow for first three numbers to be random? Say, by making it a three player game?

क्या होगा यदि आप पहले तीन नंबरों को अनियमित (random) होने की अनुमित देते हैं ? उदाहरण के लिए इसे यदि तीन खिलाड़ियों का खेल बनाकर खेला जाए तो निष्कर्ष क्या होगा ?

Terms to discuss

चर्चा के लिए मुख्य शब्द

Process of mathematics, conjecture, counter example, reporting a conjecture, etc. गणित की प्रक्रिया, अनुमान, प्रति- उदाहरण, एक अनुमान की रिपोर्टिंग, आदि।

Suggested Readings

आगे अध्ययन हेतु सुझाव

• Euclid's Algorithm I: https://nrich.maths.org/1357/index

• Euclid's Algorithm II: https://nrich.maths.org/1728

• Euclid's Algorithm III: https://www.cut-the-knot.org/blue/Euclid.shtml

References

संदर्भ

- Euclid's Game: https://www.cut-the-knot.org/blue/EuclidAlg.shtml
- The optimal strategy in Euclid's game: https://math.stackexchange.com/questions/754461/optimal-strategy-in-euclids-game

Credits

साभार

Main Authors: Jayasree S., Shweta Naik **Reviewers:** Amol Dighe, H. C. Pradhan

Editors: Beena Choksi, Geetanjali Date, Ankush Gupta, Reema Mani, K. Subramaniam

Hindi Translator: Ram Sharan Dass

Hindi Translation Coordination: Krishna Kumar Mishra

Hindi Translation Editors: Praveen Pathak, Sarita Naswa, Yogesh Dahiya

Hindi Editorial Assistance: Somesh Meena

Creative Commons Licence: CC BY-SA 4.0 International, HBCSE