LU 8.1 Euclid's game LU 8.1 યુક્લિડની રમત

Overview પ્રસ્તાવના

Here is a game that is based on the Euclidean algorithm to find the highest common factor of two natural numbers. In this game, students not only play the game making moves that correspond to steps of the Euclidean algorithm but also engage in doing mathematics by making conjectures, giving counter-examples, refuting conjectures and proving some results.

આ રમત, બે પ્રાકૃતિક સંખ્યાઓનું ગુરુતમ સામાન્ય અવયવ (ગુ.સા.અ.) શોધવા માટેની યુક્લિડનું અલ્ગોરિધમ (પ્રવિધિ/ગણિત માટે નો નિયમ) પર આધારિત છે. આ રમતમાં, વિદ્યાર્થીઓ માત્ર યુક્લિડના નિયમો વાપરી રમત રમતા નથી, પણ ગણિતથી સંબંધિત પ્રક્રિયાઓ, જેમ કે અનુમાન લગાવવું, પ્રતિ-ઉદાફરણ આપવું, અનુમાનનું ખંડન કરવું અને પરિણામો સાબિત કરવા, વગેરેમાં પણ જોળાય છે.

An important idea is that we need to look for counter-examples to conclude that a statement is not true. As a part of this unit, you should talk to the students and try to differentiate between a true prediction and a mathematical result. Also discuss how in the case of establishing the correctness of a mathematical result, giving examples is not enough; while in the case of proving a result wrong, counter-examples are enough.

એક મહત્વપૂર્ણ વિચાર એ છે કે નિવેદન સાચું નથી તે નિષ્કર્ષ પર આવવા માટે આપણે પ્રતિ-ઉદાહરણો શોધવાની જરૂર છે. આ એકમના ભાગ રૂપે, તમારે વિદ્યાર્થીઓ સાથે ચર્ચા કરી તથા 'સાચું અનુમાન' અને 'ગણિતિક પરિણામ' વચ્ચે તફાવત કરવાનો પ્રયાસ કરવો. એ પણ ચર્ચા કરો કે ગણિતિક પરિણામની સત્યતા ની ચકાસણી કરતી વખતે ફક્ત ઉદાહરણો આપવા પૂરતા નથી; પણ પરિણામ ખોટં સિદ્ધ કરવાના કિસ્સામાં એકજ પ્રતિ-ઉદાહરણ પર્યાપ્ત હોય છે.

Minimum time required: 3 sessions of 40 minutes.

ન્યૂનતમ સમય: 40 મિનિટના, 3 સત્રો.

Type of Learning Unit: Classroom

એકમનો પ્રકાર: વર્ગખંડ

Unit-specific objectives એકમના વિશિષ્ટ ફેતુઓ

- (i) To observe patterns in numbers and articulate the observed pattern clearly સંખ્યાઓમાં સ્વરૂપોનું અવલોકન કરવું અને મળેલા સ્વરૂપોનું સ્પષ્ટ શબ્દોમાં વ્યક્ત કરવું
- (ii) To look for counter-examples to refute a conjecture અનુમાનનું ખંડન કરવા માટે પ્રતિ-ઉદાફરણો શોધવા
- (iii) To understand that examples are not sufficient to prove a conjecture અનુમાન સિદ્ધ કરવા માટે ઉદાફરણો પૂરતા નથી તે સમજવું
- (iv) To understand that just one counter-example is sufficient to disprove a conjecture અનુમાન ખોટું સિદ્ધ કરવા માટે એકજ પ્રતિ-ઉદાફરણ પર્યાપ્ત છે, તે સમજવું
- (v) To come up with a logical argument (i.e. proof) in support of a conjecture

અનુમાનના સમર્થનમાં તાર્કિક દલીલ (એટલે 'સાબિતી') શોધવી

(vi) To understand the relation between taking successive differences and the Euclidean algorithm to find the highest common factor (HCF) of two numbers

બે સંખ્યાઓનો ગુ.સા.અ. શોધવા માટે ક્રમિક તફાવત અને યુક્લિડનું અલ્ગોરિધમ વચ્ચેના સંબંધને સમજવું

Links to curriculum અભ્યાસક્રમ સાથેનું સંકલન

NCERT Class 6 Mathematics	NCERT Class 10 Mathematics
એનસીઇઆરટી (NCERT) વર્ગ 6 ગણિત	એનસીઇઆરટી (NCERT) વર્ગ 10 ગણિત
Chapter 3: Playing with numbers (Nov 2022) The concept of factors, relatively prime (co-prime) numbers and multiples The concept of Highest Common Factor (HCF) પ્રકરણ 3: સંખ્યા સાથે રમત (નવેમ્બર 2022) અવચવ, પ્રમાણમાં અવિભાજ્ય (પરસ્પર-અવિભાજ્ય) સંખ્યાઓ અને ગુણાંક ની સમજ	પ્રકરણ 1: વાસ્તવિક સંખ્યાઓ (નવેમ્બર 2022) યુક્લિડની પ્રવિધિ

Materials required: Blackboard, chalk and sheets of paper. **જરૂરી સામગ્રી:** બ્લેક બોર્ડ, ચોક અને કાગળ.

Introduction

પરિચય

Playing games is a lot of fun. Today you are going to play a game that involves numbers, and based on these numbers you will find out a way to win the game, always!

રમત રમવું ખૂબજ આનંદદાયક છે. આજે તમે એક એવી રમત રમવા જઈ રહ્યાં છો કે જેમાં સંખ્યાઓનો સમાવેશ છે, અને આ સંખ્યાઓના આધારે તમે આવી રીત શોધશો જેનાથી તમે રમત ઢંમેશા જીતી શકશો!

Task 1: Play the Euclid's game કાર્ચ 1: યુક્લિડની રમત રમો

- 1. This is a two-player game. આ રમતમાં બે વિદ્યાર્થીઓ ભાગ લઈ શકશે.
- 2. The rules of the game are as follows: ૨મતના નિયમો આ પ્રમાણે છે:
- You can decide who plays first. The first player, say Player 1, writes down a number that is between 1 and 100, including both. Let's call this number 'A'. The second player, say Player 2, can write down another number of his/her choice. Let's call this number 'B'. રમત ની શરૂઆત કોણ કરશે, એ તમે નક્કી કરી શકો છો. પ્રથમ ખેલાડી, ખેલાડી-1, 1 થી 100 સુધીની કોઈપણ એક પ્રાકૃતિક સંખ્યા લખશે. ચાલો આ સંખ્યાને 'A' કફીએ. બીજો ખેલાડી, ખેલાડી-2, તેની પસંદગી ની બીજી કોઈ સંખ્યા લખી શકે છે. આ સંખ્યાને 'B' કફીએ.
- Now, the first player will write the number (A − B) or (B − A), whichever is positive. Let's call this number 'C'. ફવે, ખેલાડી-1 (A−B) અથવા (B−A), એવી રીતે બાદ કરશે કે જવાબની સંખ્યા 'ધન' ફશે. ચાલો આ સંખ્યાને 'C' કફીએ.

- Next, it is the second player's turn. He/she has a choice. He/She can either write the difference between C and A or the difference between C and B. However, if one of these differences is already written in the list (i.e., if it is equal to A or B or C) then it cannot be written again. (All differences are to be taken positive)
 - હવે ખેલાડી-ર નો વારો છે. તેની પાસે ર પસંદગી છે. તે ક્યાં તો C અને A વચ્ચેનો તફાવત અથવા C અને B વચ્ચેનો તફાવત લખી શકે છે. જો આમાંનો એક તફાવત યાદીમાં પફેલેથી જ લખાયેલો હોય (એટલે કે, જો તે તફાવત A અથવા B અથવા C ની સમાન હોય) તો તે લખી શકશે નહીં. (બધા તકાવતો ધન લેવાના રફેશે).
- Similarly, in subsequent turns, the players take turns to write a number which is the difference between any two numbers written in the list, provided the number itself is not already present in the list. એ જ રીતે, ખેલાડીઓ એક પછી એક, વારાફરતી, એવી સંખ્યા લખશે કે જે યાદીમાંના કોઈ પણ બે સંખ્યાઓ વચ્ચેનો તફાવત છે. પણ તે સંખ્યા પહેલેથી યાદીમાં ન હોવી જોઇચે.
- The game ends when it is not possible to write any new number. જ્યારે કોઈ નવી સંખ્યા લખી ન શકાય, ત્યારે રમત સમાપ્ત થાય છે.
- The person who wrote the last number will be the winner. જે ખેલાડી છેલ્લી સંખ્યા લખે છે, તે આ રમત જીતી જાય છે.

Let us look at a sample run of the game. ચાલો રમતના એક નમૂના પર નજર કરીએ.

- Suppose, the first player writes 12. The second player has 99 choices to choose his/her number. (as the upper limit is 100). ધારો કે, ખેલાડી-1 12 લખે છે. ખેલાડી-2 પાસે તેની સંખ્યા પસંદ કરવા માટે 99 પસંદગીઓ છે. (કારણ કે ઉપલી મર્યાદા 100 છે).
- Suppose, the second player chooses 16, then the first player can only write 4, i.e. the difference between 16 and 12. ધારો કે, ખેલાડી-2 16 પસંદ કરે છે, તો ખેલાડી-1 માત્ર 4 લખી શકે છે, એટલે કે 16 અને 12 વચ્ચેનો તફાવત.
- The second player then writes 8, the difference between 12 and 4. Note that the player could not have written the difference between 16 and 4, as 12 is already in the list. પછી ખેલાડી-2 8 લખે છે, 12 અને 4 વચ્ચેનો તફાવત. નોંધ કરો કે ખેલાડી-2 16 અને 4 વચ્ચેનો તફાવત લખી ન શક્યો હોત. કારણ કે 12 પહેલેશી જ યાદીમાં હાજર છે.
- Now there is no possibility of writing new numbers, so the game ends with the numbers 4, 8, 12, and 16 [12, 16, 4, 8 in the order of appearence]. ફવે નવી સંખ્યાઓ લખવાની કોઈ શક્યતા નથી, તેથી ૨મત 4, 8, 12 અને 16 [યાદીમાં 12, 16, 4, 8 આ ક્રમિક શ્રેણીમાં આવે છે] સંખ્યાઓ સાથે સમાપ્ત થાય છે.
- There are four numbers in the list, and here the second player is the winner, as he/she wrote the last number 8.
 ચાદીમાં ચાર સંખ્યાઓ છે અને અઠીં ખેલાડી-2 વિજેતા છે. કારણ કે તેણે છેલ્લી સંખ્યા 8 લખી.

Play this game with your partner multiple times. Study the lists of numbers that you got for each game and record your observations in the table below. For the last column, where you record the winner, mention whether Player 1 (who chose the first number) won or Player 2 (who chose the second number) won. તમારા જોડીદાર સાથે આ રમત અમુક વખત રમ્યા પછી, દરેક રમત માટે મેળવેલી સંખ્યાઓની યાદીનો અભ્યાસ કરો. નીચેના

કોષ્ટકમાં તમારા અવલોકનની નોંધ કરો. છેલ્લા કૉલમ માટે, જ્યાં તમે વિજેતાની નોંધ કરો છો, ત્યાં ઉલ્લેખ કરો કે ખેલાડી-1 (જેણે પ્રથમ સંખ્યા પસંદ કરી) જીત્યો કે ખેલાડી-2 (જેણે બીજી સંખ્યા પસંદ કરી) જીત્યો.

Initial Numbers પ્રારંભિક સંખ્યાઓ		The smallest number in the list		All numbers in a sequence (in ascending	How many numbers are there in your	Winner
Player 1 ખેલાડી-1	Player 2 ખેલાડી-2	યાદીમાં સૌથી નાની સંખ્યા	યાદીમાં સૌથી મોટી સંખ્યા	order) ચાદીની બધી સંખ્યાઓ (ચડતા ક્રમમાં)	the list? ચાદીમાં કેટલી સંખ્યાઓ છે?	વિજેતા

The teacher can also make this table on the board. After all the students finish playing the game a few times, collect some responses from the students to fill in the table. (It is fun to play the game the first few times. However teacher should stop the game and start a discussion, when he/she feels that the students are getting tired or bored of repeating the game.)

શિક્ષક પણ આ કોષ્ટક બોર્ડ પર બનાવી શકે છે. બધા વિદ્યાર્થીઓ થોડી વાર રમત રમી લીધા પછી, થોડા વિદ્યાર્થીઓ પાસેથી જવાબો મેળવો અને બોર્ડ પરનું કોષ્ટક ભરો. (પ્રથમ થોડી વાર રમત રમવાની મજા આવે છે. જ્યારે શિક્ષક ને લાગે કે વિદ્યાર્થીઓ રમતનું પુનરાવર્તન કરવાથી થાકી ગયા છે અથવા કંટાળી ગયા છે, તો તેમને રમત બંધ કરવી જોઈએ અને ચર્યા શરૂ કરવી જોઈએ.)

Please see the section- 'Mathematical and pedagogical explanations' before recording students' responses on the board. Ensure that a sufficient number of examples that help generate some conjectures, are on the board.

કોષ્ટકમાં વિદ્યાર્થીઓ ના જવાબો લખતા પફેલા 'ગણિતિક અને શિક્ષણશાસ્ત્રીય સમજૂતીઓ' વિભાગ જરૂર વાંચો. ખાતરી કરો કે બોર્ડ પર પર્યાપ્ત માત્રામાં ઉદાફરણો છે, જે થી કેટલાક અનુમાન તરાવવામાં મદદરૂપ થાય.

The teacher can then invite the students to look for patterns in the filled table. Ask the students to generalize the patterns and make conjectures. Write down each conjecture on the board and encourage students to examine whether it holds, by generating more examples, or it can be refuted it by generating a counter-example. Help the students see that verifying the conjecture for any number of examples does not amount to a proof, and that one counter-example is sufficient to disprove a conjecture. Encourage students to come up with proofs of their conjectures.

શિક્ષક પછી વિદ્યાર્થીઓને ભરેલા કોષ્ટકમાં સ્વરૂપો જોવા માટે આમંત્રિત કરો અને તેમને સ્વરૂપોનું સામાન્યકરણ કરવા અને અનુમાન બનાવવા કહ્યે. દરેક અનુમાનને બોર્ડ પર લખો અને વિદ્યાર્થીઓને વધુ ઉદાહરણો સાથે તેને તપાસવા માટે પ્રોત્સાહિત કરો, અથવા પ્રતિ-ઉદાહરણ આપીને તેનું ખંડન કરી શકાય, તે સમજાવો. વિદ્યાર્થીઓને એ જોવામાં મદદ કરો કે અનુમાનની સત્યતા ચકાસતી વખતે ગમે તેટલા ઉદાહરણો આપવામાં આવે, તે પૂરતું નથી, પરંતુ અનુમાનને ખોટું સાબિત કરવા માટે માત્ર એક જ પ્રતિ-ઉદાહરણ પૂરતું હ્યેય છે. વિદ્યાર્થીઓને તેમના અનુમાનને સાબિત કરવા પ્રોત્સાહિત કરો.

Some of the conjectures that the students might come up with, and the ways to handle them are discussed in the section '*Mathematical and pedagogical explanations*'. However, it is possible that students come up with conjectures that are not listed here. In this case, take the conjectures one-by-one,

verify, refute or prove the conjecture as the case may be, and familiarise students with these processes. વિદ્યાર્થીઓ પાસેથી કેટલાક અનુમાનો આવી શકે છે, અને તે અનુમાનો સાથે વ્યવહાર કરવાની રીતોની ચર્ચા 'ગણિતિક અને શિક્ષણશાસ્ત્રીય સમજૂતીઓ' વિભાગમાં કરવામાં આવી છે. જો કે, શક્ય છે કે વિદ્યાર્થીઓ એ કરેલા કેટલાક અનુમાનો સ્ચિબદ્ધ ન હોય. એવા કિસ્સામાં, દરેક અનુમાનોને એક-એક કરીને લો, અનુમાનને ચકાસો, ખંડન કરો અથવા સાબિત કરો અને વિદ્યાર્થીઓને આ પ્રક્રિયાઓથી પરિચિત કરો.

Task 2: Predict the numbers in the list કાર્ચ 2: સ્ચિમાંની સંખ્યાઓનું અનુમાન કરો

Let us assume that following are the initial numbers in the game. Based on these, can you predict the numbers that you will arrive at, while playing the game?

ધારો કે રમતમાં શરુઆતની સંખ્યાઓ નીચે મુજબ છે. શું તમે અનુમાન કરી શકો છો કે જો તમે આ સંખ્યાઓ સાથે રમત રમો તો તમારી સ્ચિમાં કઈ સંખ્યાઓ આવશે?

[Hint: If you are stuck, look at the table you just made. See if there is any relationship between the initial numbers and the numbers in the list.]

(સંકેત: જો તમે આગળ વધતા અટકી જાવ, તો તમે બનાવેલ કોષ્ટક જુઓ. શરૂઆતની સંખ્યાઓ અને સૂચિમાંની સંખ્યાઓ વચ્ચે કોઈ સંબંધ છે કે, તે જુઓ.)

- 1. Predict all the numbers in the list if: સૂચિમાંના તમામ સંખ્યાઓનું અનુમાન કરો જો:
- i. The initial numbers are 9 and 15. શરૂઆતની સંખ્યાઓ 9 અને 15 છે.
- ii. The initial numbers are 20 and 9. શરૂઆતની સંખ્યાઓ 20 અને 9 છે.
- iii. The initial numbers are 13 and 17. શરૂઆતની સંખ્યાઓ 13 અને 17 છે.
- iv. The initial numbers are 7 and 35. શરૂઆતની સંખ્યાઓ 7 અને 35 છે.

2. How did you predict the numbers for each example? Did you notice any patterns across the examples? તમે કેવી રીતે અનુમાન કર્યું કે દરેક ઉદાફરણ માટે કઈ સંખ્યાઓ આવશે? શું તમે આ ઉદાફરણોમાં કોઈ સ્વરૂપો જુઓ છો?

The teacher then can engage students in a discussion on how can they justify that their strategy for finding the numbers in the list will always work. Please study the section `Mathematical and pedagogical

explanations' for suggesstions/ideas on how to lead this discussion.

વિદ્યાર્થીઓએ યાદીમાં સંખ્યાઓ શોધવા માટે કઈ વ્યૂક્રયનાઓનો ઉપયોગ કર્યો છે, તે ઢંમેશા કારગર થશે કે કેમ, તે વિષયની ચર્ચા શિક્ષક પછી કરી શકે છે. ચર્ચા માટેના કેટલાક વિચારો *'ગણિતિક અને શિક્ષણશાસ્ત્રના સમજૂતીઓ'* માં આપવામાં આવ્યા છે. તેમનો અભ્યાસ જરૂર કરો.

3. Now that you know the strategy for finding the list, can you predict the strategy that will ensure that one of the players will always win the game? (Which player can adopt this strategy and always win?)

ફવે, તમે જાણો છો કે યાદી મેળવવા માટે કઈ વ્યૂફરયનાનો ઉપયોગ કરવો. શું તમે એવી વ્યૂફરયના વિચારી શકો છો કે એક ખેલાડી ફંમેશા આ રમત જીતે? (આ વ્યૂફરયનાનો ઉપયોગ કરીને કયો ખેલાડી ફંમેશા જીતી શકે છે?)

Mathematical and pedagogical explanations ગણિતિક અને શિક્ષણશાસ્ત્રીય સમજૂતીઓ

The activity helps the students engage in some fundamental practices of mathematics, such as observing patterns, making conjectures, verifying or refuting the conjectures, and so on. The novelty of the activity is to see how mathematical ideas emerge in the context of the game. The game begins with a simple task such as subtraction of two numbers. At the end of one or two games the student begins to grasp that the process leads to a finite sequence of numbers. Moreover, one starts figuring out that the numbers that emerge in each game depend on the choice of the initial pair of numbers. After looking for patterns, the students will realize the connection between the HCF of the initial pair of numbers with the list of numbers obtained.

આ પ્રવૃત્તિ વિદ્યાર્થીઓને ગણિતની કેટલીક મૂળભૂત પ્રથાઓ સાથે જોડવામાં મદદ કરે છે, જેમ કે સ્વરૂપોનું અવલોકન કરવું, અનુમાન લગાવવું, અનુમાનોને યકાસવું અથવા રિદયો આપવો, વગેરે. રમતના સંદર્ભમાં ગણિતિક વિચારો કેવી રીતે ઉભરી આવે છે તે જોવું આ પ્રવૃત્તિની નવીનતા છે. આ રમત બે સંખ્યાઓની બાદબાકી જેવા સરળ કાર્યથી શરૂ થાય છે. એક કે બે વાર રમત રમ્યા પછી વિદ્યાર્થીઓને ખ્યાલ આવે છે કે તેમની યાદીમાં કઈ સંખ્યાઓ આવી શકે છે. તેમજ વિદ્યાર્થીને ખ્યાલ આવે છે કે દરેક રમતમાં મેળવેલ સંખ્યાઓ, રમતની શરૂઆતમાં પસંદ કરેલ સંખ્યાઓની જોડી પર આધારિત છે. સ્વરૂપો શોધ્યા પછી, વિદ્યાર્થીઓને શરૂઆતમાં પસંદ કરેલ સંખ્યાઓની જોડીનું ગુ.સા.અ. અને યાદીમાં લખેલી સંખ્યાઓ વચ્ચેના સંબંધ વિશે નો પણ ખ્યાલ આવે છે.

To understand the mathematical significance of the students' responses, we consider different ways of thinking that students might exhibit and propose some conjectures that they might come up with. In the pedagogical discussion column, we provide explanations for some of the conjectures, and suggestions to lead the discussion.

વિદ્યાર્થીઓના પ્રતિભાવોના ગણિતિક મહત્વને સમજવા માટે, આપણે વિદ્યાર્થીઓદ્ધારા પ્રદર્શિત વિચારવાની વિવિધ રીતો પર વિચાર કરીએ છીએ અને કેટલાક અનુમાન રજૂ કરી શકીએ છે જે વિદ્યાર્થીઓ પાસેથી આવી શકે છે. 'શિક્ષણશાસ્ત્ર વિષયક ચર્યા' કોલમમાં, અમે કેટલાક અનુમાન માટે સમજૂતી અને ચર્ચાને શરૂ કરવા માટેના સૂચનો આપીએ છીએ.

Students' observations	Possible Pedagogical Discussion
વિદ્યાર્થીઓના અવલોકનો	શિક્ષણશાસ્ત્ર વિષયક ચર્ચા
The largest number in the list is the	• Ask for the reason why the larger initial number remains

same as the largest number in the initial pair of numbers.

યાદીમાં સૌથી મોટી સંખ્યા એ સંખ્યાઓની પ્રારંભિક જોડીમાં સૌથી મોટી સંખ્યા જેટલી જ ફશે.

the largest number in the list till the end. યાદીમાં અંત સુધી મોટી પ્રારંભિક સંખ્યા શા માટે સૌથી મોટી સંખ્યા રફે છે તેનું કારણ પુછો.

 Explanation: As we are subtracting numbers in consecutive steps within the set of positive integers, the numbers obtained will always be smaller than the largest number in the initial pair of numbers.

સમજૂતી: જેમ-જેમ આપણે ક્રમવાર ધન પૂર્ણાંકોના સમૂરુમાંથી સંખ્યાઓને બાદ કરીએ છીએ, તો પ્રાપ્ત સંખ્યાઓ રુંમેશા સંખ્યાઓની પારંભિક જોડીમાં સૌથી મોટી સંખ્યા કરતા નાની કશે.

The list contains only the multiples of the smallest number in the final list.

રમતના અંતે મળતી યાદીની સૌથી નાની સંખ્યાના ગુણાંકનો જ યાદીમાં હશે.

- Ask to verify with other examples in the table. ક્રોષ્ટકમાંના અન્ય ઉદાફરણો સાથે ચકાસવા માટે કફો.
- Ask whether they can come up with a counter-example. પૂછો કે શું તેઓ પ્રતિ-ઉદાહરણ શોધી શકે છે.
- Ask for the reason why this is the case. આવું કેમ થાય છે તેનું કારણ પૂછો.

In the initial pair of numbers, if one of the numbers is a multiple of the other, then the list contains only the multiples of the smaller initial number.

સંખ્યાઓની પ્રારંભિક જોડીમાં, જો સંખ્યાઓમાંથી એક અન્યનો ગુણાંક હોય, તો સ્ચિમાં નાની પ્રારંભિક સંખ્યાના ગુણાંકનો જ સમાવેશ થાય છે.

E.g. For the initial numbers 7 and 35, the list obtained contains only multiples of 7.

દા.ત. પ્રારંભિક સંખ્યાઓ 7 અને 35 માટે, પ્રાપ્ત યાદીમાં માત્ર 7 ના ગુણાંકો જ ફશે. Ask to take a few more initials pairs of numbers, where one is a multiple of the other and verify that it works every time.

થોડા વધુ પ્રારંભિક સંખ્યાઓની જોડી લેવા માટે કહ્યે, જે એક બીજાના ગુણાંક હ્યેય અને ચકાસો કે તે દર વખતે કામ કરે છે.

 Look for a counter-example—a set of two numbers which will refute the above conjecture. This is an oppourtunity to discuss whether not finding a counter-example amounts to a proof of the conjecture.

પ્રતિ-ઉદાહરણ માટે જુઓ - બે સંખ્યાઓનો સમૂહ જે ઉપરોક્ત અનુમાનનું ખંડન કરશે. પ્રતિ-ઉદાહરણ ન મળવું એ અનુમાનના પુરાવા સમાન છે કે. તે અંગે ચર્ચા કરવાનો આ એક સારો અવસર છે.

If the initial pair of numbers are coprime (i.e., 1 is the only common factor), then the list consists of all the numbers from 1 to the larger initial number.

જો સંખ્યાઓની પ્રારંભિક જોડી પરસ્પર-અવિભાજ્ય હોય (એટલે કે, 1 એ એકમાત્ર સામાન્ય અવયવ છે), તો યાદીમાં 1 થી સૌથી Ask to take a few more initial pairs of co-prime numbers and verify that it works every time.

પરસ્પર-અવિભાજ્ય સંખ્યાઓની થોડી વધુ પ્રારંભિક જોડી લેવાનું કફો અને ચકાસો કે તે દર વખતે કામ કરે છે.

 Look for a counter-example—a set of two numbers which will refute the above conjecture. This is an oppourtunity to discuss whether not finding a counter-example amounts to a proof of the conjecture.

પ્રતિ-ઉદાહરણ માટે જુઓ - બે સંખ્યાઓનો સમૂહ જે ઉપરોક્ત અનુમાનનું

મોટી પ્રારંભિક સંખ્યા સુધીની તમામ સંખ્યાઓ ફાજર ફશે.

If the initial pair of numbers has a

common factor, d, then the smallest

જો સંખ્યાઓની પારંભિક જોડીમાં સામાન્ય

અવયવ, d ફોય, તો યાદીમાં સૌથી નાની

number in the list is d.

સંખ્યા d હશે.

ખંડન કરશે. પ્રતિ-ઉદાફરણ ન મળવું એ અનુમાનના પુરાવા સમાન છે કે. તે અંગે ચર્ચા કરવાનો આ એક અવસર છે.

- Note that students may not consider 1 as a common factor, and therefore while testing this conjecture they might not have co-prime numbers as the initial pair. નોંધ કરો કે વિદ્યાર્થીઓ 1 ને સામાન્ય અવયવ તરીકે વિચારતા નથી. અને તેથી આ અનુમાનનું પરીક્ષણ કરતી વખતે તેમની પાસે પ્રારંભિક જોડી તરીકે પરસ્પર-અવિભાજ્ય સંખ્યાઓ ન ઠોઈ શકે.
- Ask to take a few more examples of similar kind and verify that it works every time. સમાન પ્રકારનાં થોડા વધુ ઉદાહરણો લેવાનું કહ્યે અને ચકાસો કે તે દર વખતે કામ કરે છે.
- Ask whether the two numbers in the pair have any other common factor. Ask them whether they want to modify the conjecture. (Note that the conjecture in this particular form is not true. When we start with initial numbers 12 and 16. 2 is the common factor in both the numbers but does not appear in the final list.)

વિદ્યાર્થીઓ ને પૂછો કે શું જોડીમાંની બે સંખ્યાઓમાં અન્ય કોઈ સામાન્ય અવયવ છે. તેમને પૂછો કે શું તેઓ અનુમાનમાં ફેરફાર કરવા માંગે છે. (નોંધ કરો કે આ સ્વરૂપમાં અનુમાન સાચું નથી. જ્યારે આપણે પ્રારંભિક સંખ્યાઓ 12 અને 16 થી શરૂ કરીએ છીએ, ત્યારે 2 એ બંને સંખ્યાઓમાં સામાન્ય અવયવ છે પરંતુ અંતિમ યાદીમાં એ દેખાતું નથી.)

- Ask them if there is anything special about the common factor that is the smallest number in the list. પૂછો કે શું સામાન્ય અવયવ જે યાદીમાં સૌથી નાની સંખ્યા છે તેના વિશે કંઈ ખાસ છે?
- Think about why the smallest number in the list is this particular factor. યાદીમાં સૌથી નાની સંખ્યા શા માટે આ ચોક્કસ અવયવ છે તે વિશે વિચારો.

If the last three conjectures above have been articulated by the students, encourage students to come up with one conjecture that will include all these three conjectures.

જો ઉપરોક્ત છેલ્લા ત્રણ અનુમાન વિદ્યાર્થીઓ દ્વારા વ્યક્ત કરવામાં આવ્યા ફોય, તો વિદ્યાર્થીઓને એક આવા અનુમાન સાથે આવવા પ્રોત્સાફિત કરો જેમાં આ ત્રણેય અનુમાનોનો સમાવેશ થાય.

common factor of the initial pair of numbers.

- The smallest number in the list is a Find out if this includes or contradicts any of the above conjectures.
 - શોધો કે આમાં ઉપરોક્ત કોઈપણ અનુમાનનો સમાવેશ થાય છે કે તેનો

યાદીમાં સૌથી નાની સંખ્યા એ સંખ્યાઓની પ્રારંભિક જોડીનો સામાન્ય અવયવ છે.	વિરોધાભાસ છે. • Refine, verify, or refute the conjecture. અનુમાનને વધુ સ્પષ્ટ કરો, ચકાસો અથવા રદિયો આપો.
The smallest number in the list is the HCF of the initial pair of numbers. યાદીમાં સૌથી નાની સંખ્યા એ સંખ્યાઓની પ્રારંભિક જોડીનો ગુ.સા.અ. છે.	conjectures.

Note: When students come up with observations and conjectures, these might not be articulated clearly enough. The teacher may need to rephrase these, and ask clarifying questions to make the conjectures precise. There cannot be a standard instruction for this, and the teacher will have to think of ways of clarifying. Once a conjecture is formed, ask students to verify, refute or refine it. The next step is to think of a proof.

નોંધ: જ્યારે વિદ્યાર્થીઓ અવલોકનો અને અનુમાન સાથે આવે છે, ત્યારે તે પર્યાપ્ત રીતે સ્પષ્ટ વ્યક્ત ન પણ ફોઈ શકે. શિક્ષકે આને ફરીથી લખવાની જરૂર પડી શકે છે, અને અનુમાનોને યોક્કસ બનાવવા માટે સ્પષ્ટતા કરતા પ્રશ્નો પૂછવા જોઈએ. આ માટે પ્રમાણભૂત સૂચના ફોતી નથી, આથી શિક્ષકે સ્પષ્ટતા કરવાની વિવિધ રીતો વિશે વિચારવું પડશે. એકવાર અનુમાન બનાવ્યા પછી, વિદ્યાર્થીઓને તેને ચકાસવા, રદિયો આપવા અથવા સ્પષ્ટ કરવા કફો. આગળનું પગલું એની સાબિતી વિશે વિચારવાનું છે.

Task 3: Looking for proofs of some conjectures કાર્ચ 3: કેટલાક અનુમાનનો માટેના પુરાવા જોવાં

Some students made these interesting observations after playing a few rounds of the game: કેટલાક વિદ્યાર્થીઓએ થોડી વાર રમ્યા પછી આ રસપ્રદ અવલોકનો કર્યા:

Observation 1: The smallest number in the final list is the HCF of the initial pair of numbers. અવલોકન 1: અંતિમ યાદીમાં સૌથી નાની સંખ્યા એ પ્રારંભિક સંખ્યાઓની જોડીનો ગુ.સા.અ. છે.

Observation 2: All and only the multiples of this smallest number up to the largest number appear in the list.

અવલોકન ર: સૌથી નાની સંખ્યાથી, સૌથી મોટી સંખ્યા સુધીના તમામ અને માત્ર ગુણાંકો યાદીમાં દેખાય છે.

1. Can you figure out why this happened with every pair of numbers? શું તમે તારવી શકો કે સંખ્યાઓની દરેક જોડી સાથે આવું કેમ થયું?

Let us look at the two observations. ચાલો બે અવલોકનો જોઈએ.

- Observation 1 says the following:
 - a) The smallest number in the list divides both the initial numbers.
 - b) The smallest number is not just any common factor, but the HCF of the two initial numbers. અવલોકન 1 પ્રમાણે:
 - a) યાદીમાં સૌથી નાની સંખ્યા બંને પ્રારંભિક સંખ્યાઓને વિભાજિત કરે છે.

- b) સૌથી નાની સંખ્યા એ ફક્ત સામાન્ય અવયવ નથી, પરંતુ બે પ્રારંભિક સંખ્યાઓનો ગુ.સા.અ. છે.
- Observation 2 says the following:
 - a) All the numbers in the list are multiples of the smallest number in the list.
 - b) All the multiples of the smallest number up to the largest number appear in the list. અવલોકન 2 પ્રમાણેઃ
 - c) યાદીમાંની તમામ સંખ્યાઓ યાદીમાં સૌથી નાની સંખ્યાના ગુણાંક છે.
 - d) સૌથી નાની સંખ્યાથી, સૌથી મોટી સંખ્યા સુધીના તમામ અને માત્ર ગુણાંકો યાદીમાં દેખાય છે.
- 2. We need to prove or justify these observations. Can you think about the ways of doing this? આપણે આ અવલોકનોને સાબિત કરવા અથવા વાજબી ઠેરવવાની જરૂર છે. શું તમે આ કરવાની રીતો વિશે વિચારી શકો છો?

The teacher could use the reasoning given below to guide the discussion with the students and to help them arrive at a proof.

શિક્ષક નીચે આપેલા તર્કનો ઉપયોગ વિદ્યાર્થીઓ સાથેની ચર્યાને માર્ગદર્શન આપવા અને તેમને પુરાવા તરવવામાં મદદ કરવા માટે કરી શકે છે.

Observation 1a: The smallest number in the list divides both the initial numbers. અવલોકન 1a: ચાદીમાં સૌથી નાની સંખ્યા બંને પારંભિક સંખ્યાઓને વિભાજિત કરે છે.

<u>Proof for Observation 1a:</u> For positive numbers, whenever we subtract a number A from another (larger) number B, the result is less than B. Given that we start with two initial numbers, and form subsequent numbers by subtracting the smaller from the larger, all the numbers will be smaller than the largest number in the initial pair.

અવલોકન 1a માટેનો પુરાવો: ધન સંખ્યાઓ માટે, જ્યારે પણ આપણે એક મોટી સંખ્યા B માંથી તેનાથી નાની સંખ્યા A બાદ કરીએ, ત્યારે પરિણામ B કરતા ઓછું આવે છે. આપણે બે પ્રારંભિક સંખ્યાઓથી શરૂઆત કરીએ છીએ, અને મોટી સંખ્યામાંથી નાનીને બાદ કરીને અનુગામી સંખ્યાઓ બનાવીએ છીએ. તમામ સંખ્યાઓ પ્રારંભિક જોડીમાંની સૌથી મોટી સંખ્યા કરતા નાની કશે.

Since we are not allowing negative numbers, the game has to stop at some stage. So there exists a smallest number in the list, which may be 1 or a number greater than 1.

આપણે ઋણ સંખ્યાઓનો ઉપયોગ કરતા ન હોવાથી, રમત અમુક તબક્કે બંધ થઈ જવી જોઈએ. તેથી યાદીમાં સૌથી નાની સંખ્યા આવે છે. જે 1 અથવા 1 કરતા મોટી હોઈ શકે છે.

Let us call this smallest number S. If we call the initial numbers as A and B, A being the larger of the two numbers, ovservation 1a claims that S divides A and S divides B.

ચાલો આપણે આ સૌથી નાની સંખ્યાને S કફીએ. જો આપણે પ્રારંભિક સંખ્યાઓને A અને B કફીએ, અને આ બે સંખ્યાઓમાંથી A મોટી છે, અવલોકન 1a દાવો કરે છે કે A અને B બંનેને S ભાગે છે.

Lets us first prove that S divides B. ચાલો પહેલા સાબિત કરીએ કે S એ B ને વિભાજિત કરે છે.

Let us assume S does not divide B. ચાલો ધારીએ કે S એ B ને વિભાજિત કરતું નથી. Then B= nS + k, with k < S By applying the division algorithm with k as the remainder. તો B= nS + k, જ્યાં k < S ભાગાકાર ના નિયમ ના આધારે, જ્યાં k શેષ છે.

But S belongs to the list. So B – nS, which is k will also belong to the list... we get this by subtracting S 'n times' from B.

પરંતુ S યાદીમાં સામેલ છે. તો B – nS, જે k છે તે પણ યાદીમાં આવશે…જે આપણે B માંથી S ને 'n વખત' બાદ કરીને મેળવીએ છીએ.

But k < S, which contradicts the fact that S is the smallest number in the list. પરંતુ k < S, જે એ ફકીકતનો વિરોધાભાસ કરે છે કે S એ ચાદીમાં સૌથી નાની સંખ્યા છે.

That means our assumption that S does not divide B was wrong, so S divides B. તેનો અર્થ એ કે આપણી ધારણા કે S એ B ને વિભાજિત કરતું નથી તે ખોટું ફતું. તેથી B ને S વિભાજિત કરે છે.

Similarly, we can show that S divides A as well. એ જ રીતે, આપણે બતાવી શકીએ A ને પણ S વિભાજિત કરે છે.

So, S is a common factor of A and B. તેશી. S એ A અને B નો સામાન્ય અવયવ છે.

Observation 1b: The smallest number is not just any common factor, but the HCF of the two initial numbers.

અવલોકન 1b: સૌથી નાની સંખ્યા એ કોઈ સામાન્ય અવયવ નથી, પરંતુ બે પ્રારંભિક સંખ્યાઓનો ગુ.સા.અ. છે.

Proof for Observation 1b: Let us prove a statement before we proceed with the proof of observation 1b. **અવલોકન 1b માટેનો પુરાવો:** આપણે અવલોકન 1b નો પુરાવો કરતા પફેલાં એક નિવેદનને સાબિત કરીએ.

Statement (I): A common factor of two numbers also divides their difference. ચાલો આપણે અવલોકન 1**b** ના પુરાવા સાથે આગળ વધીએ તે પફેલાં એક નિવેદન સાબિત કરીએ.

i.e. If q divides C and D, and C > D, then q divides C – D એટલે કે જો C અને D ને q વિભાજિત કરે છે અને C > D, તો C – D ને પણ q વિભાજિત કરશે.

Proof of Statement (I): q divides C and D would mean, **નિવેદનનો પરાવો (I):** q એ C અને D ને વિભાજિત કરે છે. આનો અર્થ થશે.

Let C = rq and D = tq for some integers r and t > 0 C = rq અને D = tq (અમુક પૂર્ણાંકો r અને t > 0 માટે)

So C - D = $rq - tq = (r - t) \times q$ dl C - D = $rq - tq = (r - t) \times q$

So, q divides C – D and hence is a common factor of the difference between C and D. C – D ને q વિભાજિત કરે છે અને તેથી C અને D વચ્ચેના તફાવતનું સામાન્ય અવયવ q છે.

Coming back to observation 1b અવલોકન 1**b** પર પાછા આવચે

Thus, if we start with two initial numbvers and q is a common factor for both, it is also a common factor of their difference. This ensures that q is a common factor of all the three numbers in the list after the

first step of the game. At every subsequent step, a pair of numbers is taken from the list and the difference written down as a new number. Thus, if q is a common factor of the existing pair of numbers, it is also a factor of the new number. This ensures that is a number is a common factor of the initial numbers A and B, it is a common factor of all the numbers in the list, including the smallest number in the list S.That is, any common factor of A and B, divides S.

આમ, જો આપણે બે પ્રારંભિક સંખ્યાઓથી શરૂઆત કરીએ અને q એ બંને માટે એક સામાન્ય અવયવ છે, તો તે તેમના તફાવતનું એક સામાન્ય અવયવ પણ છે. આ સુનિશ્ચિત કરે છે કે રમતના પ્રથમ પગલા પછી q એ યાદીમાંની ત્રણેય સંખ્યાઓનો સામાન્ય અવયવ છે. દરેક અનુગામી પગલામાં, યાદીમાંથી સંખ્યાઓની જોડી લેવામાં આવે છે અને તેમના તફાવતને નવી સંખ્યા તરીકે લખવામાં આવે છે. આમ, જો q એ સંખ્યાઓની ફાલની જોડીનો સામાન્ય અવયવ છે, તો તે નવી સંખ્યાનો પણ અવયવ છે. આ સુનિશ્ચિત કરે છે કે સંખ્યા એ પ્રારંભિક સંખ્યાઓ A અને B નો એક સામાન્ય અવયવ છે, તે યાદીની તમામ સંખ્યાઓનો એક સામાન્ય અવયવ છે, જેમાં S જ સૌથી નાની સંખ્યા છે, તેનો પણ સમાવેશ થાય છે. એટલે કે, A અને B નો કોઈપણ સામાન્ય અવયવ, S ને વિભાજિત કરે છે.

So, if the HCF of initial numbers A and B is d, then d divides S and d \leq S. However, we know that S is also a factor of A and B (Observation 1a). Hence S \leq d. Therefore, we have S = d.

તેથી, જો પ્રારંભિક સંખ્યાઓ A અને B નો ગુ.સા.અ. d છે, તો S ને d વિભાજિત કરે છે અને d ≤ S. જો કે, આપણે જાણીએ છીએ કે S એ A અને B (અવલોકન 1a) નો પણ અવયવ છે. આથી S ≤ d. તેથી, આપણી પાસે S = d આવે છે.

Observation 2a: All the numbers in the list are multiples of the smallest number in the list. અવલોકન 2a: ચાદીમાંની તમામ સંખ્યાઓ ચાદીમાં સૌથી નાની સંખ્યાના ગુણાંક છે.

<u>Proof for Observation 2a:</u> Using the same argument used in the proof of Observation 1a, we get that the smallest number, S, divides any number in the list.

અવલોકન 2a માટેનો પુરાવો: અવલોકન 1a ના પુરાવામાં વપરાચેલી સમાન દલીલનો ઉપયોગ કરીને, આપણે મેળવીએ છીએ કે સૌથી નાની સંખ્યા, S, યાદીમાંની કોઈપણ સંખ્યાને વિભાજિત કરે છે.

Observation 2b: All the multiples of the smallest number up to the largest number appear in the list. અવલોકન 2**b**: સૌથી નાની સંખ્યા સૌથી મોટી સંખ્યા સુધીના તમામ ગુણાંકો ચાદીમાં છે.

<u>Proof for Observation 2b:</u> S belongs to the list, and A is a multiple of S. અવલોકન 2**b** માટેનો પુરાવો: **S** ચાદીમાં છે, અને **A** એ **S** નો ગુણાંક છે.

```
So, A = fS
તેથી, A = fS
```

Now S and A = fS are both already in the list.

ફવે S અને A = fS બંને પફેલેથી જ યાદીમાં છે.

So, fS - S = (f - 1)S is also in the list.

તેથી, fS - S = (f - 1)S પણ યાદીમાં છે.

Similarly, (f - 1)S - S = (f - 2)S is also in the list.

એ જ રીતે, (f - 1)S - S = (f - 2)S પણ યાદીમાં છે.

Continuing like this we can see that,

આ રીતે ચાલુ રાખીને આપણે જોઈ શકીએ છીએ કે,

(f - 1)S, (f - 2)S, (f - 3)S,...., 3S, 2S also belong to the list.

(f − 1)S, (f − 2)S, (f − 3)S,....., 3S, 2S પણ યાદીમાં છે.

Relation to the Euclidean algorithm યુક્લિડિયન અલ્ગોરિધ સાથે નો સંબંધ

Imagine you change the rules of the game in this way: કલ્પના કરો કે તમે રમતના નિયમો આ રીતે બદલો છો:

Instead of subtracting the smaller number from the largest, you could subtract a <u>multiple</u> of the smaller number from the larger. And then in the next step do the same with the multiple used and the number remaining after the subtraction. This, then, is the Euclidean algorithm for you! So, can you see why the game and therefore the Eucledian algorithm works?

સૌથી મોટી સંખ્યામાંથી નાની સંખ્યાને બાદ કરવાને બદલે, તમે મોટી સંખ્યામાંથી નાની સંખ્યાના <u>ગુણાંક</u>ને બાદ કરી શકો છો. અને પછી આગળના પગલામાં વપરાચેલ બફુવિધ અને બાદબાકી પછી બાકી રફેલી સંખ્યા સાથે તે ફરીથી કરો. તો પછી આજ યુક્લિડિયન અલ્ગોરિધમ છે! તો, શું તમે જોઈ શકો છો કે કઈ રીતે રમત અને તેથી યુક્લેડીયન અલ્ગોરિધમ કામ કરે છે?

Points to Ponder ધ્યાનમાં લેવા જેવી બાબતો:

- Do all pairs of numbers allow for a winning strategy? If not, what kinds of numbers will allow for a winning strategy? શું સંખ્યાઓની બધી જોડી જીતવા માટે વાપરી શકાય? જો નફીં, તો જીતવા માટે સંખ્યાઓની કઈ જોડીનો ઉપયોગ કરી શકાય?
- What happens if you allow for first three numbers to be random? Say, by making it a three player game? ધારો કે ત્રણ લોકો આ રમત એક સાથે રમે છે અને ત્રણ સંખ્યાઓથી શરૂઆત કરે છે, તો શું થશે?

Terms to discuss ચર્ચા કરવા માટે શબ્દસમૂફો

Process of mathematics, conjecture, counter example, reporting a conjecture, etc. ગણિતની પ્રક્રિયા, અનુમાન, પ્રતિ ઉદાફરણ, અનુમાનની જાણ કરવી વગેરે.

Suggested Readings વધારે માહિતી માટે

- 1. Euclid's Algorithm I: https://nrich.maths.org/1357/index
- 2. Euclid's Algorithm II: https://nrich.maths.org/1728
- 3. Euclid's Algorithm III: https://www.cut-the-knot.org/blue/Euclid.shtml

References

- Euclid's Game (યુક્લિડની ૨મત): <u>https://www.cut-the-knot.org/blue/EuclidAlg.shtml</u>
- The optimal strategy in Euclid's game (યુક્લિડની રમતમાં શ્રેષ્ઠ વ્યૂહ્રચના): https://math.stackexchange.com/questions/754461/optimal-strategy-in-euclids-game

Credits

Main Authors: Jayasree S., Shweta Naik **Reviewers:** Amol Dighe, H. C. Pradhan

Editors: Beena Choksi, Geetanjali Date, Ankush Gupta, Reema Mani, K. Subramaniam

Translator: AmisH Parmar

Editors: Bhavana Trivedi, Parag Shah

Editorial Assistance: AmisH Parmar, Jayesh Parmar

Creative Commons Licence: CC BY-SA 4.0 International, HBCSE