Changes during Evaporation

About 500 years ago, an Italian artist and engineer Leonardo da Vinci showed that water bodies are crucial resources of any country and by stopping flow of river one country can even harm its neighbours. Yet he argued that evaporation takes away the water from one country and passes it on to another country. It ensures that....no one can really own the water!

	What do	-			-	-			ainer? Do	you see any
Fill in	n the bla	nk to	com	plete the	sent	ence:	The pro	ocess of	a liquid	
					at the	liquid	gas inte	erface is	called ev	aporation.
Q 3	. What	are	the	factors	that	you	know	which	affect	evaporation? — —
b) c)	When do If you dor What hap After it ha	n't wip pens t	e it, ho	sweat wh	en it d	ries?				

Task 1: Matter Transfer in Evaporation

Q5. I	f you	take a	a liquid	in a s	sealed	flask	and	mass	of this	flask	with	the l	iquid i	s m.	After
some	time,	the li	quid in	the se	ealed f	lask e	vapo	rates.	Predic	t if the	e mas	ss of	this fla	ask w	ill be
still s	ame a	ıs m, ç	greater	than <i>i</i>	m or le	ss tha	an <i>m</i> .								

What you need: Conical flask (100 cm³) with rubber cork, a dropper, digital weighing Balance (least count 10 mg or 1 mg), Acetone (or Spirit or Nail polish remover, 2 mL).

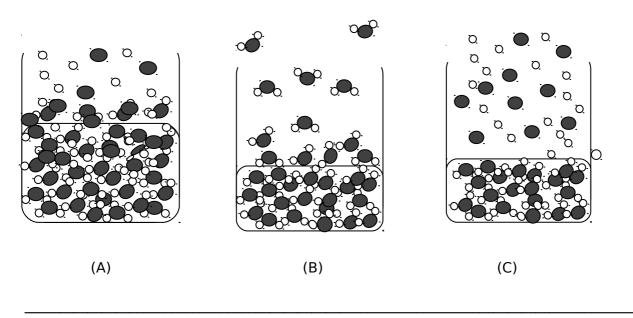
Procedure:

- 1. Take a clean and dry conical flask and place a cork on it. Use a balance to measure its mass, and write it as m₁. Open the cork and smell the flask gently.
- 2. To this flask, add about 6 to 7 drops of acetone (or spirit or nail polish remover) using dropper and smell gently (do not take it near your nostrils and breathe heavily). Place the cork on the flask and seal it tightly. Use a balance to measure its mass and write it as m_2 .
- 3. Warm the conical flask with hands and shake it till the liquid in it evaporates (do not invert the conical flask). Measure its mass again and write it as m₃.
- 4. Open the flask and smell gently. (Do not take it near your nostrils and breathe heavily), keep the flask open for 5 minutes. Close the flask by replacing the cork. Measure the mass of flask now and write it as m_4 .

Record your observations in table below.

	Step 1	Step 2	Step 3	Step 4
Mass	m ₁ = gm	m ₂ = gm	m ₃ = gm	m ₄ = gm
Smell				

Q 6	. Wa	s the	smell	of th	e conical	flask	content	before	closing	(Step	1) and	after	opening
the	cork	(Step	4) saı	me or	r different	? Wh	at does	this tell	about t	he cha	inges in	air ir	iside the
flasl	</td <td></td>												


Q 7. What does the flask contain after step 3 and before step 4? What physical state is it in?
Q8. What happened to the air that was in the flask initially?
${f Q}$ ${f 9}$. Is m_3 same as m_1 or m_2 ? Can you explain your result?
Q 10 . Is m ₄ same as m ₁ or m ₂ ? Can you explain your result?
Q 11a . Based on your results; which of the following statement(s) is/are true and which is /are false? 1) Evaporation converts liquid into gaseous phase
 2) Gases have mass 3) Gases can diffuse through air within few seconds 4) Movement from liquid to gaseous state decreases mass of its molecules
Q 11b . Give evidences to support your answer for each of the above answers.

Our modern understanding of liquids suggest that molecules of a liquid are always moving. Even at a fixed temperature and pressure, different molecules have different amount of

Vigyan Pratibha Learning Unit

kinetic energy. In liquids, some molecules at the surface always have more kinetic energy than the others. Even at temperature much below its boiling point, some of its molecules have enough energy to break the forces of attraction and escape from the surface liquid in the form of vapour (or gas).

Q 12. If is water molecule then which of the following diagram represents evaporation of water? Justify your answer.

Task 2: Heat Transfer in an Evaporation

When a liquid keeps on evaporating from its surface, the molecules remaining in liquid have lower average energy. This cools down the remaining liquid.

Q13. Why do people sprinkle water on open ground on a hot sunny day?

Requirement: a thermometer (0°C to 100°C), cotton or paper napkin, a rubber band (small size), water in a small beaker or small container, blower (optional).

Procedure:

1. Cover thermometer bulb with paper napkin or cotton from all sides (including bottom), put the rubber band to fix the paper napkin or cotton at place (As shown in Fig. I).

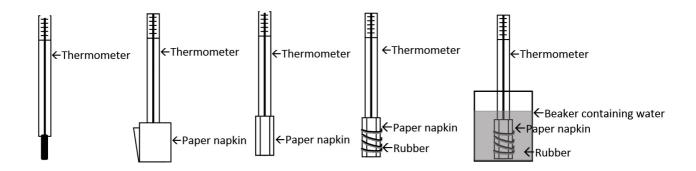


Fig. I

- 2. Note down the thermometer reading.____ °C.
- 3. Hold the thermometer in a hand, keeping the cotton / paper napkin on the thermometer bulb at a distance of 1 inch from your mouth, and blow air for about three minutes by rotating thermometer very slowly (use blower if required). Note down the thermometer reading after every one minute (do not keep the thermometer aside while noting down the temperature reading).
- 4. Wet the thermometer bulb covered with paper napkin or cotton, just by dipping it in water for few seconds (as shown in Fig I). Note down the thermometer reading:____ °C.
- 5. Blow air at the cotton or paper napkin on thermometer bulb holding it in a hand and keeping it at a distance of 1 inch from your mouth for about three minutes by rotating thermometer very slowly (use blower if required). Note down the thermometer reading after every one minute (do not keep the thermometer aside while noting down the temperature reading).

Observations: For Step 3 and 5

			The	rmometer read	ling in °C
			After 1 min.	After 2 min	After 3 min
Step 3	Bulb covered with dr	ry			
	paper napkin or cotton				
Step 5	Bulb covered with we	et			
	paper napkin or cotton				

14. How did the temperature change in two cases? Can you explain it?												

Q 15. In summer days if electricity is cool (to prevent its spoilage) without a	cut off for two days, then how can you keep food refrigerator?
- ''	side on a hot sunny day, how can you maintain you elf from sun stroke by utilizing the phenomena o
_	aporation of a liquid. In which case we want the
evaporation to happen fast and in which (a) Drying of clothes (c) Evaporation of water in a lake (e) Drying of soil in a field (g) Drying of Nail polish on nails (i) Fresh plaster on a wall	(b) Drying of papads (d) Evaporation of water in puddles after rains (f) A perfume sprayed on a handkerchief (h) Paint done on a wall
Above cases show that in some situation in some situations, we want to slow do	ons we want evaporation be as fast as possible and wn the evaporation.
Q18. How can you make the evaporati	on in any situation slower or faster?
Q19. Arrange the following in increasing Water, spirit, kerosene, coconut oil.	ng order of evaporation rate.
Now we will study evaporation of different pressure.	erent liquids at the same conditions of temperature

What we need: Stop Watch or a clock, four droppers, acetone (2 mL), ethanol/spirit (2 mL), glycerine (2 mL), water (2 mL), brown paper or any other absorbing paper (4 pieces of about $4 \text{ cm} \times 2 \text{ cm}$ size).

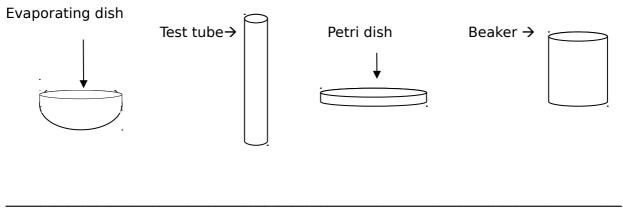
Procedure:

- 1) You are given four small containers labelled 1, 2, 3, 4 containing acetone, alcohol, glycerine and water, respectively.
- 2) On the corners of four pieces of brown paper, write the names of four liquids.
- 3) Using a dropper, place one drop of each liquid on the piece of brown paper having its name.
- 4) Note down the time required for complete evaporation of the liquid on each paper with the help of a stop watch.

Observa	tions:
---------	--------

3

Room temperature:


Ethyl Alcohol

Glycerine Water

1100111 10	imperature:							
Sr. No.	Liquid	Time liquid	(Seconds)	required	for	evaporation	of	the
1	Acetone							

		Q 20. Which of the above four liquids evaporates faster? Can you explain why?
Q 21. If you were to make a paint, which of the above liquids would you choose to mix th solid colour in? Why would you chose that liquid?	ıe	

Q 22. 10 mL of ethanol if placed in different containers, like evaporating dish, test tube, petri dish, beaker. Arrange the containers in the increasing order of evaporation rate of ethanol.

Q 23. Can evaporation be a source of pollution? If yes, give some examples and e	xplain
Q 24. Explain the statement of Leonardo da Vinci given in the beginning of this Ur	nit.

References:

- 1) Lohner, Science Buddies, Sevenja. (https://www.sciencebuddies.org, search for Evaporation).
- 2) Evaporation and Evapotranspiration , Measurements and Estimation by Abtew, Wossenu, Melesse, Assefa M.
- 3) Droplet Wetting and Evaporation , e book,, 1st ed. Edited by David Brutin.